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ABSTRACT: Short-chain fatty acids (SCFAs) are important metabolites derived from the gut microbiota 

through fermentation of dietary fiber. SCFAs participate a number of physiological and pathological processes 

in the human body, such as host metabolism, immune regulation, appetite regulation. Recent studies on gut-brain 

interaction have shown that SCFAs are important mediators of gut-brain interactions and are involved in the 

occurrence and development of many neurodegenerative diseases, including Alzheimer's disease. This review 

summarizes the current research on the potential roles and mechanisms of SCFAs in AD. First, we introduce the 

metabolic distribution, specific receptors and signaling pathways of SCFAs in human body. The concentration 

levels of SCFAs in AD patient/animal models are then summarized. In addition, we illustrate the effects and 

mechanisms of SCFAs on the cognitive level, pathological features (Aβ and tau) and neuroinflammation in AD. 

Finally, we analyze the translational value of SCFAs as potential therapeutic targets for the treatment of AD. 
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Alzheimer’s disease (AD) is the most common cause of 

dementia, and it is the sixth leading cause of death 

worldwide [1]. According to the World Alzheimer 

Report, there were more than 50 million dementia patients 

worldwide in 2018, and the number is expected to rise to 

150 million by 2050 [2]. AD is a progressive 

neurodegenerative disease with clinical symptoms that 

range from mild spontaneous cognitive impairment at the 

early stage to severe neurological and psychiatric 

symptoms at the advanced stage, including executive 

function, complex attention, and language dysfunction 

[3,4]. The known neuropathological features of AD 

include extracellular neuritic plaques of massed β-

amyloid (Aβ) proteins, intraneuronal neurofibrillary 

tangles that aggregate hyperphosphorylated tau proteins, 

gliosis, and neuronal loss [5-7].  

Currently, an early-life low level of education; 

midlife hypertension, hearing loss, obesity, head trauma, 

and intemperance; and later-life depression, antisocial 

behavior, smoking, lack of physical exercise, air 

pollution, and diabetes, are identified as the risk factors 

most closely associated with AD [8]. Evidence has shown 

that an imbalance of gut microbiota caused by genetic and 

environmental factors greatly contributes to the 

progression of AD [9]. For example, changes in gut 

microbiota diversity have been found in patients with AD 

and mild cognitive impairment, as compared to healthy 

individuals [10]. In addition, transplantation of gut 
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microbiota from healthy mice into the intestinal tract of 

AD model mice was shown to ameliorate the cognitive 

impairment of AD mice and reduce pathological changes 

such as Aβ plaques, tau hyperphosphorylation, and 

neuroinflammation [11]. These discoveries have provided 

new strategies for the early diagnosis and treatment of 

AD. However, the mechanism by which gut microbiota 

and the brain communicate is not clear and may involve 

several systems, including the peripheral nervous system 

(vagus nerve and enteric nervous system), metabolic 

system, endocrine system, and immune system [12-14].  

A wide variety of microorganisms colonize the 

human gastrointestinal tract, including bacteria, viruses, 

archaea, eukaryotic microbes, and bacteriophages [15]. 

There are more than 1000 microbial species and 

approximately 1014 microorganisms, which is more than 

100 times the number of human body cells [16]. In 

addition, the human microbiota has more than 4 × 106 

genes, while the number of human genes is 26000 [17,18]. 

Bacteria constitute the greatest proportion of microbes in 

the human intestinal microbial system, especially 

Firmicutes (about 51%) and Bacteroidetes (about 48%) 

[16,19]. The microbiota secrete a variety of metabolites 

that participate in human growth, development, and 

pathological processes, including short-chain fatty acids 

(SCFAs), bile acids, and neuroactive molecules [15,20]. 

SCFAs are the most abundant metabolites derived from 

the metabolism of indigestible dietary fibers by gut 

microbes. Recently, SCFAs have been associated with a 

variety of human diseases such as obesity, diabetes, and 

neurodegenerative diseases [20,21].  

This review focuses on the mechanism of action of 

SCFAs in AD. The review begins with the metabolism, 

distribution, and mechanism of SCFAs. The evidence of a 

correlation between SCFAs and AD is then summarized. 

Subsequently, the effects and mechanisms of SCFAs on 

cognitive impairment, pathological changes, and 

neuroinflammation in AD are analyzed. Finally, the 

application of SCFAs as targets in AD treatment is 

discussed to provide a theoretical basis for the further 

study of SCFAs. 

 

1. Biochemical and functional features of SCFAs 

 
1.1 The metabolism and distribution of SCFAs 

 

SCFAs are saturated fatty acids with less than six carbon 

atoms, including formic acid, acetic acid, propionic acid, 

butyric acid, and valeric acid. In humans, SCFAs are 

produced mainly through anaerobic digestion of dietary 

fiber or indigestible carbohydrates by microorganisms in 

the colon [22]; small amounts of SCFAs are formed from 

peptide, protein, and glycoprotein precursors [23,24]. 

Although most types of SCFAs can be generated in the 

colon, the main SCFAs are acetic acid, propionic acid, and 

butyric acid, accounting for approximately 60%, 20%, 

and 20%, respectively [25]. The production of SCFAs is 

followed by absorption into the mucous epithelium of the 

cecum and colon, which is a very effective process that 

absorbs approximately 90–95% of the total yield [26,27]. 

Once it is absorbed, colonic epithelial cells use butyrate 

as a metabolic substrate to supply energy for themselves, 

accounting for 60–70% of the energy requirement of 

isolated colonic epithelial cells [28]. The remaining SCFA 

anions are transported through volume-regulated anion 

channels, driven by Na+ efflux [29], to the portal system 

and then to the liver. Hepatocytes undergo 

gluconeogenesis using the remaining propionic acid and 

butyric acid, and 50–70% of acetate is taken up for 

cholesterol and fatty acid synthesis [30,31]; this leads to 

circulating concentrations of propionate and butyrate 1–

15 µM and acetate concentrations of 100–200 µM 

[28,32,33]. The other major metabolic site for SCFAs is 

muscle cells, which generate energy using acetate [30]. 

Only small amounts of colon-derived SCFAs 

(approximately 36% acetic acid, 9% propionic acid, and 

2% butyric acid) are present in the bloodstream and 

transported to other tissues throughout the body; these 

mediate a wide range of biological functions, including 

host metabolism, immunity regulation, and appetite 

regulation [34,35].  

There is some question as to whether all SCFAs can 

cross the blood–brain barrier (BBB). In 1973, Oldendorf 

et al. demonstrated in rats that SCFAs other than formic 

acid can cross the BBB, as measured by the brain 

concentration of 14C-labeled SCFAs injected into the 

carotid artery [36]. The BBB penetration efficiency was 

the highest for butyrate, followed by propionate; the 

lowest for acetate. All of these showed feedback 

inhibition on brain uptake [36]. In 1979, Bachmann found 

that the human brain concentrations of propionate and 

butyrate are 9.4–13.5 nmol/500 mg and 6.7–8.5 nmol/500 

mg, respectively, using gas chromatography [37]. In 

addition, studies have shown that mice treated with live 

Clostridium butyricum have increased levels of butyric 

acid in the brain [38,39]. Although SCFAs can pass 

through the BBB, the concentrations of SCFAs are very 

limited. Recently, SCFAs in the central nervous system 

(CNS) were documented as regulating the formation of 

the BBB, microglial maturation, and synaptic plasticity 

[40-42]. 

 

1.2 Mechanism of SCFA signal transduction 

 

1.2.1 Ligands for G protein–coupled receptors (GPRs) 

 

To date, six SCFA receptors have been identified: GPR41 

(free fatty acid receptor 3, FFAR3), GPR42 (G protein–
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coupled receptor 42), GPR43 (FFAR2), GPR109A 

(hydroxycarboxylic acid receptor 2, HCAR2), GPR81, 

GPR164 (olfactory receptor family 51 subfamily E 

member 1, OR51E1), and OR51E2 (Olfr78) [25]. Among 

them, GPR41, GPR43, and GPR109A were discovered 

earlier and have been studied more comprehensively; the 

GPR41, GPR43, and GPR109A receptors are widely 

expressed in humans [39,43]. High expression levels of 

GPR43 have been detected in immune cells, especially 

neutrophils and monocytes [44,45], indicating an 

important role in the regulation of immunity. The others 

are expressed in the distal colon, skeletal muscle, heart, 

and liver [46-48]; GPR43 is not found in the CNS or 

peripheral nervous system. GPR41 expression has been 

detected in adipose tissue, immune tissue, and the liver 

[44-46]; it is also located in autonomic and somatic 

sensory nerve cell bodies [49], the sympathetic nervous 

system [50], and nerve fibers of the portal vein [51]. 

Moreover, the expression of GPR41 and GPR43 changes 

in different physiological or disease states; for example, 

the concentration of GPR43 in the rat proximal colon is 

upregulated by increases in the uptake of indigestible 

carbohydrates [52]. In diet-induced obesity models, the 

transcription of GPR43 is upregulated in adipose tissue, 

the liver, and some of the skeletal muscles [53-55]. 

GPR109A, a nicotinate receptor, was shown to be 

activated by butyrate and h-D-hydroxybutyrate with an 

50% effective concentration (EC50) of 1.6 mmol/L [56, 

57], and can be expressed in white or brown adipose 

tissue, immune cells, and epithelial cells in the small and 

large intestines [58]. Notably, the expression of GPR 

109A has been detected in the brains of mammals, 

including the hypothalamic neurons in rodents [59] and 

the rostral ventrolateral medulla [60]. 

 

Table 1. The expression sites, ligands, signaling pathways, and functions of SCFA receptors. 

 
Receptor Localization in the body (nervous 

system) 

SCFAs substrate Physiological function References 

GPR41 (FFAR3) adipose tissue, lymph nodes, 

pancreas, spleen, bone marrow, 

peripheral blood mononuclear 

cells, colon, small intestine 

(peripheral nervous system, nerve 

fibers of the portal vein, vagal, 

dorsal root, and trigeminal 

ganglia) 

propionate, 

butyrate, 

valerate > 

acetate > 

caproate 

• regulation of intestinal 

gluconeogenesis 

• suppressor of appetite 

• regulation immunity and inflammation 

• gastrointestinal functionality 

• regulation sympathetic nervous system 

• protecting the blood–brain barrier 

[25, 45, 46, 

50, 51, 72-

74] 

GPR43 (FFAR2) neutrophils, monocytes, 

peripheral blood mononuclear 

cells, B-lymphocytes, 

polymorphonuclear cells, 

eosinophils, skeletal muscle, 

heart, adipose tissue, distal ileum 

and colon, small intestine 

acetate, 

propionate > 

butyrate > 

valerate > 

formate 

 

• cholesterol/lipid metabolism 

• the immune response 

• suppressor of appetite 

• gastrointestinal functionality 

• carcinogenesis; 

• regulation the metabolism 

[25, 45, 46, 

51, 73, 74] 

GPR109A 

(HCAR2) 

adipocytes, monocytes, 

macrophages, neutrophils, 

dendritic cells and epidermal 

Langerhans cells, retinal pigment 

epithelium, the intestinal 

epithelium, (rostral ventrolateral 

medulla, PC12 cells, 

hypothalamic neuron) 

butyrate, 3-

hydroxybutyrate 
• regulation of lipid and immunity;  

• as a tumor suppressor; 

• cellular effects in the epidermis;  

• bone remodeling 

[56-58, 75, 

76] 

GPR164 

(OR51E1) 

heart, epicardial adipose tissue, 

prostate tissue, tubule system of 

kidney tissue, gastrointestinal 

mucosae 

butyric acid • regulation of cardiac function; 

• modulators of the renal physiology; 

• gastrointestinal enteroendocrine 

activity 

[77-81] 

OR51E2 (Olfr78) kidney blood vessel, prostate 

cancer, epidermal melanocytes, 

(autonomic nervous system cells) 

acetate, 

propionate 
• modulation blood pressure; 

• involvement in tumor process 

[82-84] 

 

All GPRs transduce signals by activating downstream 

G proteins, including the α, β, and γ subunits [46]. The Gα 

subunits can be grouped into four subclasses (Gαi, Gαq, 

Gαs, and Gα12) [46] and are linked to various mitogen-

activated protein kinases (MAPKs), such as p38MAPK, 

JNK, and ERK1/2, which transduce the signal [61]. Due 

to the complexity of the downstream pathway of GPRs, 

SCFA–receptor binding produces complex signal 

transduction mechanisms and biological effects. Gαi/o 

can be coupled with GPR41 and GPR43, whereas Gαq can 

be coupled only with GPR43 [62]. Coupling of the two 

receptors induces inositol 1, 4, 5-trisphosphate formation, 
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an intracellular calcium increase, ERK1/2 activation, and 

a decrease in cyclic adenosine monophosphate (cAMP) 

[44,63,64]. The coupling of acetate-activated GPR43 to 

ERK1/2 is weaker than that of propionate-stimulated 

GPR41 [65]. In addition, the activation of ERK1/2 by 

GPR41 and GPR43 is different: GPR41 acts through 

PI3K, and GPR43 activates ERK1/2 through Src without 

the activation of Raf-1 [65]. Transfection of either GPR41 

or GPR43 into HEK293 or CHO-K1 cells can result in 

weak activation of the JNK and p38MAPK pathways [65]. 

Increased phosphorylation of p38 was also observed in 

MCF-7 cells treated with a GPR43 agonist [66]. 

Furthermore, recent studies have reported that the G (i/o) 

βγ pathway and β arrestin2 can be coupled by GPR43 [67-

69]. GPR109A is sensitive to pertussis toxin, indicating 

that the receptor couples to the Gi protein [70,71]; 

activation of the Gi protein leads to the inhibition of 

adenylyl cyclase in most cell types. It can also activate the 

β-isoforms of phospholipase C through Gβγ subunits in 

some cells, especially in the immune system [57]. The 

expression distribution, ligands, signaling pathways, and 

functions of the other receptors are shown in Table 1. 

 

1.2.2 Inhibition of histone deacetylation  

 

Epigenetic regulation, including DNA methylation, 

chromatin remodeling, non-coding RNA regulation, and 

histone modifications, has been shown to play a crucial 

role in the growth and development of the nervous system 

and neurodegenerative diseases such as Huntington’s 

disease, Parkinson’s disease, amyotrophic lateral 

sclerosis, and AD [85-87]. Nucleosomes, made up of 147 

base pairs of DNA surrounded by double-copy histones 

(H2A, H2B, H3, and H4), are the basic building blocks of 

chromosomes [86,88]. Nucleosome regulation of gene 

expression involves two main mechanisms: ATP-

dependent remodeling of chromatin complexes, which 

results in rapid chromosomal rearrangements [89], and 

post-translational modification of histones at more than 

20 possible sites [90], including acetylation, 

SUMOylation, methylation, ubiquitylation, and 

phosphorylation [88,91]. Among these, histone 

acetylation is one of the most important epigenetic 

mechanisms in the development of AD and is a bridge 

between environmental and genetic factors [88,91,92]. 

The status of histone acetylation is the result of the 

dynamic activities of two kinds of enzymes with opposing 

functions: histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) [93]. Histones are acetylated by 

HATs; this loosens the chromatin structure and makes it 

easier for transcription factors to bind to gene promoters 

and affect transcription. HDACs act in the opposite 

direction; they remove acetyl groups from histones [94]. 

In mammals, HDACs are divided into four classes based 

on their structure, function, and subcellular localization 

[91].  

HDAC inhibitors are divided into four classes based 

on their molecular structures: aliphatic acids, 

hydroxamates, benzamides, and cyclic peptides [95]. 

SCFAs belong to the aliphatic acid class and act as broad-

spectrum inhibitors of HDAC enzymes in the millimolar 

range [96]. Class I HDACs, class II HDACs, and some 

class III HDACs can be non-competitively inhibited by 

butyrate and propionate [97-99]. Valeric acid may be 

another inhibitor of class I HDACs [100]. The inhibitory 

efficiency of butyrate is about 80%, which is the highest 

among SCFAs; propionate has approximately 60% 

inhibitory efficiency [101]. SCFAs play a wide range of 

roles in different cells and tissues by inhibiting the action 

of HDACs; for example, the SCFAs methoxyacetic acid 

and valproic acid can improve the transcriptional efficacy 

of nuclear hormone receptors, such as estrogen and 

progestin nuclear hormone receptors, to increase cellular 

sensitivity [102]. In the immune system, propionate and 

butyrate promote the apoptosis of neutrophils through 

HDAC inhibition by a mechanism not involving GPRs 

and MAPKs [103]. In addition, n-butyrate can regulate the 

function of macrophages in the intestines by inhibiting 

HDACs instead of through toll-like receptor signaling and 

activation of GPRs [104]. The signal transduction 

mechanisms of SCFAs are summarized in Figure 1. 

 

2. SCFAs and AD 

 

Studies have detected variations in gut microbiota 

diversity in AD patients and mouse models [10,105]; 

these caused changes in the concentrations of SCFAs. In 

2017, Yilmaz et al. compared metabolite concentrations 

in saliva samples between AD patients and healthy 

controls using 1H-NMR metabolomics, and they found an 

increased level of propionate in the AD patients [106]. 

Similarly, another study reported that propionate and 

acetic acid concentrations in saliva samples from AD 

patients were 1.35 and 1.25 times higher, respectively, 

than those in the control group [107]. However, a recent 

study found that the serum of AD patients had lower 

concentrations of acetate, which was associated with a 

higher risk of AD [108]. In fecal samples, seven SCFAs 

(formic acid, acetic acid, propionic acid, butyric acid, 2-

methylbutyric acid, isovaleric acid, and valeric acid) 

showed progressively decreased levels among healthy 

controls, patients with amnestic mild cognitive 

impairment, and AD patients [109]. 

In APP/PS1 transgenic mice, which are a model of 

AD, the concentrations of butyric acid and isobutyric acid 

were both decreased in the feces and brain [110]; butyric 

acid concentrations in the brain tissue were positively 

correlated with those in the feces [110]. Another study 
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found lower levels of propionic acid and higher levels of 

lactic acid in the APP/PS1 mice compared to wild-type 

mice, as measured in the feces through stable isotope 

labeling and liquid chromatography–tandem mass 

spectrometry joint analysis [111]. The differences in the 

SCFA concentrations in the AD and wild-type mice 

existed whether they were the same age or at different life 

stages. For example, the SCFAs were significantly 

decreased in 11-month-old 3xTg-AD mice compared with 

both 3- and 6-month-old 3xTg-AD mice; this trend 

occurred much later than observed in wild-type mice (6 

months) [112]. In addition, the concentrations of acetate 

were dramatically decreased in AD-model Drosophila, 

accompanied by a reduced abundance of Acetobacter and 

Lactobacillus [113]. Among the published reports, the 

concentration of SCFAs varies significantly in patients 

with AD, but the differences in test samples lead to 

inconsistent results from one study to another 

[10,114,115].  

 

 
Figure 1. An integral view of the cellular signal transduction pathway of SCFAs. Short-chain fatty acids (SCFAs) affect 

biological functions through two main pathways. They can bind G protein–coupled receptors on the surface of cell membranes 

(including GPR41, GPR43, and GPR109) to activate downstream NF-κB, MAPKs, and other signaling pathways. They can 

also enter cells through MCTs on the cell surface and participate in inhibiting HDACs or promoting HATs to regulate gene 

transcription. GPR, G protein–coupled receptor; NF-κB, nuclear factor-κB; MAPKs, mitogen-activated protein kinases; 

MCTs, monocarboxylate transporters; HDACs, histone deacetylases; HATs, histone acetyltransferases 

2.1 SCFAs and cognitive impairment 

 

As the most representative clinical symptom of the early 

stage of AD, cognitive impairment has always been a 

focus of clinical and basic research on AD. SCFAs have 

been demonstrated to ameliorate cognitive impairment 

caused by AD or a variety of other factors, such as 

isoflurane exposure, scopolamine, and radiation [116-

119]. While sodium butyrate has no effect on learning and 

memory in normal wide-type rats [117], it can ameliorate 

the cognitive impairment of the early and advanced stages 

of AD in an AD mouse model [119-121]. Regarding the 

potential mechanism by which SCFAs improve cognition, 

Lee et al. discovered that sodium butyrate reversed 

radiation-induced downregulation of phosphorylated 

cAMP response element binding protein (p-CREB)/brain-

derived neurotrophic factor (BDNF) expression [116]. 

Analogously, experimental pneumococcal meningitis-
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associated memory impairment can be improved by 

sodium butyrate through increasing the expression of 

BDNF and glial cell line–derived neurotrophic factor 

[122]. In an AD mouse model, Govindarajan et al. found 

that sodium butyrate amelioration of cognitive 

impairment was associated with an increase in the 

expression of memory-consolidation genes, such as 

MYST4, Marcksl1, GluR1, SNAP25, and SHANK3 

[120]. In addition, butyrate was shown to improve 

synaptic plasticity in 8-week-old 5xFAD mice by 

increasing synapse-associated proteins and promoting 

long-term potentiation and depotentiation [123]. In 

microglia, sodium butyrate can upregulate the 

PI3K/AKT/CREB/BDNF signaling pathway, which 

contributes to long-term potentiation and synaptic 

plasticity [124]. In neural regeneration, physiological 

levels (µM) of SCFAs can promote the mitosis of human 

neural progenitor cells by regulating the expression of 

genes related to proliferation, apoptosis, and neurogenesis 

[125]. However, SCFAs at millimolar (mM) 

concentrations are toxic to neural stem cells [125]. The 

changes in the signaling pathways mentioned above are 

ultimately related to the activities of SCFAs as HDAC 

inhibitors and to chromosome remodeling, which 

ameliorates impairments in cognition and memory [126].  

 

2.2 SCFAs and Aβ–tau pathology 

 

The decades-old amyloid hypothesis, currently the most 

popular hypothesis for AD, is a major focus of current 

research [127]. In this hypothesis, the abnormal 

accumulation of extracellular Aβ peptides is considered 

the core pathological feature of AD. Aβ peptides are 

derived from the sequential proteolytic cleavage of 

amyloid precursor protein (APP) by β- and γ-secretase [7]. 

The tau hypothesis, another hypothesis for AD etiology, 

is not as specific to AD as Aβ and can be observed in 

frontotemporal dementia, progressive supranuclear palsy, 

corticobasal degeneration, and Pick’s disease. [6]. The tau 

hypothesis postulates that tau pathology arises first in a 

specific brain region (the entorhinal cortex or locus 

coeruleus) and then travels along the nerve loop to the 

entire cerebral cortex, leading to neurodegeneration [128].  

Studies have shown that SCFAs have a regulatory 

effect on both Aβ and tau pathologies. Clinical studies 

have shown that Aβ levels in patients with AD were 

positively correlated with the serum concentrations of 

acetate and valerate and negatively correlated with the 

level of butyrate [129]. SCFAs can alter the pathological 

effects of Aβ in several ways. Treatment with oral sodium 

butyrate shows a dose-dependent reduction in Aβ levels 

in the brains of 5xFAD mice at the early stage of disease 

progression [119]. However, injection of sodium butyrate 

into the lateral brain ventricles of APP/PS1-21 mice at an 

advanced disease stage does not reduce Aβ levels [120]; 

this may be related to the administration, dosage, and 

duration of sodium butyrate treatment. The spontaneous 

aggregation of monomeric Aβ into more neurotoxic Aβ 

oligomers or Aβ fibrils is an important pathological 

process in the brains of patients with AD. The SCFAs 

propionic acid, butyric acid, and valeric acid were 

observed to inhibit the aggregation of both monomer Aβ1-

40 and Aβ1-42 into Aβ oligomers and Aβ fibrils [130]. 

Moreover, sodium butyrate was shown to promote 

mitochondrial function and cell proliferation, which 

ameliorates Aβ-induced N2a cell damage [131]. In 

addition, sodium propionate showed a protective effect 

against Aβ-induced neurotoxicity by inhibiting the 

production of inducible nitric oxide synthase and 

cyclooxygenase-2 (COX-2) [132]. In amyloidogenic APP 

processing, sodium butyrate can decrease the expression 

of APP and increase NEP expression levels [131]. 

However, sodium butyrate has also been shown to 

enhance neuronal apoptosis induced by the APP C-

terminal fragment (C31, AICD, and C99) by lowering 

histone deacetylation to regulate gene transcription [133]. 

Recent preclinical studies have demonstrated that SCFA 

supplementation (25.9 mM sodium propionate, 40 mM 

sodium butyrate, and 67.5 mM sodium acetate) increased 

Aβ plaque deposition in germ-free APP/PS1 mice [134]; 

there were no significant differences in the expression 

levels of APP, PS1, BACE1, and ADAM10, or the 

aggregation kinetics of Aβ, and only a slightly reduced 

ratio of C83 and C99 [134]. Sodium butyrate can also 

modulate reactive oxygen species levels mediated by 

nuclear factor erythroid 2–related factor 2 stabilization to 

reduce BACE1 expression and Aβ accumulation caused 

by high cholesterol in SK-N-MC cells [135].  

SCFAs have also been associated with tau 

hyperphosphorylation, another pathological feature of 

AD. In the forebrain of PS-1/PS-2 conditional double-

knockout mice, the level of tau hyperphosphorylation 

(Ser-199 and Ser-202) was significantly decreased after 

treatment with sodium butyrate [136]. However, Nuydens 

et al. reported that treatment of the human neuroblastoma 

TR14 cell line with sodium butyrate can induce aberrant 

tau phosphorylation, which may be related to the 

regulation of cytoskeletal proteins [137].  

 

2.3 SCFAs and neuroinflammation 

 

In the last decade, extensive research has shown that 

neuroinflammation plays an important role in the 

occurrence and development of neurodegenerative 

diseases. In AD, neuroinflammation is induced partially 

by the pathology of Aβ and tau proteins, and there is a 

close interaction between them [138]. The main sites of 

neuroinflammation are microglia and astrocytes in the 
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CNS [139]. Microglia are cells of the CNS innate immune 

system and are widely distributed throughout the brain. In 

the physiological state, microglia are the main cells that 

maintain immune homeostasis in the CNS and promote 

synaptic plasticity [139]. At different stages of AD, 

resting M0 microglia are activated by Aβ and dead 

neurons to transform into the M2 subtype of microglia, 

which have anti-inflammatory and phagocytic functions, 

or the M1 subtype of microglia that have proinflammatory 

effects [140]. SCFAs are indispensable for the maturation 

of microglia and have important regulatory effects on 

pathological conditions. Erny et al. reported that SCFAs 

can reverse the damage to microglia caused by having a 

germ-free gut in mice; this elucidated the role of SCFAs 

in promoting the maturation and function of microglia 

[141]. Moreover, in a lipopolysaccharide (LPS)-induced 

neuroinflammation model, supplying glyceryl triacetate 

significantly decreases microglial activation and reduces 

proinflammatory cytokine interleukin-1β (IL-1β) 

expression at the transcriptional and translational levels 

by upregulating histone acetylation [142,143]. Butyrate 

also lowered the secretion of proinflammatory cytokines 

by microglia and ameliorated the associated 

neuroinflammation [144]. In an AD model, acetate 

supplementation can inhibit the ERK/JNK/NF-κB 

(nuclear factor-κB) pathway to reduce the levels of COX-

2 and IL-1β through GPR41 [145]. Moreover, SCFA 

treatment can promote microglial recruitment to Aβ 

plaques without influencing the phagocytic capacity of 

microglia [134].  

Recently, Wenzel et al. adopted human THP-1 

monocytic cells and differentiated HL-60 

myelomonocytic cells to mimic the function of human 

microglia to explore the effect of SCFAs on the function 

of microglia. The results showed that SCFAs reduced the 

secretion of proinflammatory cytokines (IL-1β, MCP-1, 

and TNF-α) and the phagocytic ability of THP-1 cells; 

they also suppressed the respiratory burst of HL-60 cells 

induced by N-formylmethionine-leucyl-phenylalanine 

[146]. The anti-inflammatory mechanisms of SCFAs are 

related to the following aspects: 1) SCFA (acetate) 

supplementation rescues LPS-induced upregulation of 

phospholipase C β1, COX-1 and COX-2 [147], 2) the 

expression of COX-2 is inhibited by butyrate in Aβ-

induced BV2 cells, accompanied by a lower level of NF-

κB-p65 phosphorylation [148]. Moreover, protein kinase 

B (AKT)–Rho GTPase signaling has been shown to 

mediate sodium butyrate effects on microglial process 

elongation [149]. The regulation of SCFAs on the 

expression level of these pathways ultimately depends on 

the inhibition of HDACs, which facilitates combination of 

acetylated H3K9 with the promoter regions of target 

genes [111,149].  

Astrocytes, a type of CNS glial cell, are important in 

maintaining CNS homeostasis by regulating 

neurotransmitter secretion, modulating synapse and BBB 

function, and providing trophic support for neurons 

[150,151]. Being similar to microglia, the astrocytes 

transit from a resting state to the A1 reactive state to 

promote the pathological process of AD in response to 

stimulation by inflammatory cytokines from microglia 

and by Aβ [151]. Several independent studies have 

demonstrated that SCFAs inhibit the proinflammatory 

action of astrocytes in multiple ways. First, acetate 

supplementation can decrease levels of proinflammatory 

cytokines (TNF and IL-6) by downregulating p38MAPK 

and NF-κB signaling and increasing anti-inflammatory 

cytokine concentrations (IL-4) via upregulating TGF-β1 

signaling; these may be associated with enhanced H3K9 

acetylation [152]. In addition, the LPS-induced secretion 

of phospholipase A2 (cPLA2), cPLA2 IIA, and 

phospholipase C β1 was reduced after treatment with 

acetate [147]. In 2016, Moriyama et al. found that acetate 

can rescue LPS-induced effects on nitric oxide and 

reactive oxygen species production, and on the p38MAPK 

pathway, in cultured primary rat astrocytes [153]. Recent 

studies have observed that the expression of the odorant 

receptor Olfr920 in astrocytes can be activated by SCFAs 

following the activation of the Gs-cAMP pathway; this 

decreases the activity of LPS-induced reactive astrocytes 

[154] (Fig. 2).  

 

2.4 SCFAs and the BBB 

 

The BBB is a highly selective semipermeable membrane 

that plays an important role in maintaining CNS 

homeostasis [155]. The BBB is composed of cerebral 

endothelial cells, pericytes, the basement membrane, glial 

cells (astrocytes, microglia, and oligodendrocytes), and 

smooth muscle cells [156]. These cells are linked 

functionally with neurons to form the neurovascular unit 

[156]. A number of studies have shown that BBB 

dysfunction is crucial to the onset and development of 

AD, promoting the production of Aβ and reducing its 

clearance, activating microglia to accelerate 

neuroinflammation, and driving oxidative stress and 

neuronal damage [157]. Studies have shown that GPR41 

receptors for SCFAs are expressed in endothelial cells 

[158], including cerebrovascular endothelial cells [72]. 

SCFAs are indispensable for the establishment of a 

normal BBB and in the protection and repair of the BBB 

during disease progression. For example, the BBB 

permeability in germ-free mice can be reduced by 

treatment with sodium butyrate [159]. In addition, BBB 

disruption and brain edema induced by middle cerebral 

artery occlusion can be attenuated significantly by 

valproic acid through suppression of the nuclear 
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translocation of NF-κB, degradation of tight-junction 

proteins, and induction of matrix metalloproteinase-9 

[160]. Therefore, the effect of SCFAs on the BBB in AD 

warrants further study. The mechanism of SCFAs in AD 

was summarized in Figure 2

 

 
Figure 2. Overview of the effects of SCFAs in Alzheimer's disease. SCFAs from the gut microbiota enter the CNS by crossing the 

blood–brain barrier. They act on neurons to promote neuronal repair and regeneration through upregulation of the CREB/BDNF 

signaling pathway and expression of memory-consolidation genes. In addition, the secretion of inflammatory factors is reduced by 

inhibiting the MAPK, NF-κB, and other pathways in disease-related microglia and astrocytes with proinflammatory effects. SCFAs 

also participate in the pathological regulation of Aβ and tau proteins, ultimately ameliorating cognitive impairment in AD. CREB, 

cyclic-AMP response element binding protein; BDNF, brain-derived neurotrophic factor; NF-κB, nuclear factor-κB; MAPK, mitogen-

activated protein kinase 

3. Potential SCFA-targeting AD treatment strategies 

 

SCFAs significantly improve cognition in AD, the 

pathologies of Aβ and tau, and neuroinflammation, 

suggesting that they have potential value in the treatment 

of AD. At present, the regulation of SCFA concentrations 

in the body is divided mainly into three types. First, the in 

vivo concentration of SCFAs can be regulated by oral or 

intravenous supplementation of SCFAs, as summarized 

above. The second approach is to rebuild a healthy 

homeostatic system of gut microbes through fecal 

transplants or probiotics [161]. For example, oral 

administration of Bifidobacterium breve strain A1, which 

can produce acetate, significantly ameliorated Aβ-

induced cognitive impairment [162]. Clostridium 

butyricum, which produces butyrate, can ameliorate 

cognitive impairment, reduce Aβ deposition, and inhibit 

neuroinflammation by reducing both microglial activation 

and secretion of proinflammatory cytokines [148]. In 

addition, transplantation of wild-type mouse feces into 

APP/PS1 mice can improve pathological indicators by 

increasing the production of SCFAs [163]. The 

proportions of metabolic substrates that are converted into 

the corresponding SCFAs can be increased by adjusting 

the diet, including consuming prebiotics or a healthy diet 

[164]. It was recently reported in patients with mild 

cognitive impairment that a modified Mediterranean–

ketogenic diet increases fecal propionate and butyrate 

levels, which are negatively correlated with Aβ-42 [165].  

 

4. Conclusion 

 

SCFAs, one of the main metabolites of the gut microbiota, 

play a vital role in pathophysiological processes. Their 

biological functions are realized mainly by binding to cell 

membrane receptors that activate downstream signaling 

pathways or directly enter the cell to regulate histone 

deacetylation. Abnormal changes are observed in the 

concentrations of SCFAs in AD. They are involved in AD 

processes by regulating synaptic plasticity, Aβ and tau 
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pathologies, and neuroinflammation. SCFAs derived 

from gut microbiota are potential targets for the treatment 

of AD, but their clinical applications require further 

research. 
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