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ABSTRACT: The population of older individuals is increasing rapidly, but only a small fraction among them is 

able to experiences a healthy life. Due to lack of physical exercise and oxidative stress, aging leads to sarcopenia 

and finally end up with frailty. Sarcopenia is a component of the frailty and described as age related degenerative 

changes in the skeletal muscle mass, strength and quality. Though the loss of muscle strength and mass gradually 

seem inevitable during aging, it can be partially prevented or overcome by a deeper insight into the pathogenesis. 

Sirtuin protein leads to longevity across different organisms ranging from worms to mammals. Expression of 

sirtuin protein increases during physical exercise and thus strengthens muscle mass. Satellite cells leads to muscle 

repair in a SIRT1 dependent manner. In addition, SIRT1 improves insulin sensitivity and induces autophagy in 

the aged mice. The current paper discussed the putative role of sirtuins in sarcopenia and frailty. Moreover, it 

highlighted the pathways by which sirtuins can inhibit ROS production, inflammation and mitochondrial 

dysfunctions and therefore confers a protective role against frailty and sarcopenia.  The critical role of sirtuins 

in the sarcopenia and frailty pathogenesis can eventually fuel the development of novel interventions by targeting 

sirtuins. 
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Introduction 

 

The phenomenon of aging is essentially associated with 

the catabolism of muscles that leads to sarcopenia and 

frailty. In the older population, these two syndromes have 

emerged as major geriatric giants, and pose a significant 

burden to our health care system: primarily because of 

high rate of multisystem decline, leading to falls, 

fractures, physical disability and mortality. The ICD‐10‐

CM (M62.84) code recognizes sarcopenia as a disease and 

on the basis of severity, Sarcopenia in Older People by 

European Working Group (EWGSOP)  has categorized 

three stages of sarcopenia; Pre-sarcopenia, which is 

associated with low muscle mass and normal muscle 

strength or physical performance while sarcopenia 

exhibits both low muscle mass and low muscle strength or 

physical performance; Severe sarcopenia, the most 

advanced stage, manifests itself as low muscle mass, low 

muscle strength, and low physical performance. Physical 

disability, poor quality of life and death are the 

detrimental effects of sarcopenia  [1]. Sarcopenia finally 

ends up with frailty and has been identified as a crucial 

component of frailty in the older people and often leads to 

cachexia [2]. Frailty is characterised by conditions 

including exhaustion, weakness, and slowness, whereas 

sarcopenia refers to the loss of muscle mass. It is 

noteworthy that frailty is more prevalent in individuals 

exhibiting lack of physical activity and exercise [3]. 

Emerging evidence suggests that dietary habits and 

nutritional status can significantly impact the 

susceptibility to frailty. In particular, Mediterranean 

dietary pattern, regular consumption of fruits vegetables 
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and lower consumption of processed food confers 

protective against the frailty [4–7]. 

The frail older are more susceptible to outcomes such 

as falls, increased impairment, hospitalization and 

mortality [8, 9]. Various definitions have been used to 

conceptualize and operationalize frailty [10, 11] and the 

most extensively approved was proposed by Fried et al in 

2001 [12]. There are five characteristics of Fried’s 

criteria; slow motor performance, poor endurance and 

energy, weakness, shrinking and inadequate physical 

activity. An individual exhibiting 3 or more criteria out of 

5 will be considered as frail. 

Physical phenotype of Fried’s criteria, such as lower 

grip strength and slower gait speed exhibits a significant 

overlap with the characteristics of sarcopenia. 

Consequently, sarcopenia and frailty has been regarded as 

a common geriatric syndrome and are often manifest 

themselves as adverse health outcome and impaired 

health-related quality of life. Latest diagnostic tools like 

Groningen Frailty Indicator and Frailty Index of 

Rockwood et al, [13, 14] can well distinguish the multiple 

dimensions of frailty from sarcopenia. Through extensive 

research and a better understanding of frailty, sarcopenia 

has been recognized as a crucial component of the frailty 

[15]. 

Since frailty is characterised by subtle and subjective 

clinical features, diagnosis is often difficult, particularly 

during the early stage. Furthermore, a definitive 

therapeutic intervention is still lacking, which further 

highlights the requirement for a reliable biomarker. 

Increase in the lifespan had simultaneously led to an 

increase in the incidence of several age-related 

comorbidities and among them frailty is the most 

prominent.  However, the mechanisms responsible for the 

onset of frailty are poorly understood. The current 

situation requires a comprehensive understanding of the 

underlying pathway and considering the strong 

association between frailty and senescence, it is 

imperative to explore the molecules with a strong link 

with senescence.  The current review article describes the 

putative mechanistic role of an anti-senescence protein 

sirtuin in the pathogenesis of frailty and sarcopenia. 

 

Sirtuin in aging, sarcopenia, frailty 

 

Sirtuins (silent information regulator) family consists of 

seven isoforms which are nicotinamide adenine 

dinucleotide (NAD)-dependent proteins and conserved in 

all domains of life. Since, last two decades, sirtuins have 

evolved as a critical epigenetic regulator of aging.  It also 

mediates the consequences of  calorie restriction (CR), the 

only dietary intervention that deaccelerates the process of 

aging and extends lifespan [16]. Moreover, the beneficial 

effects of CR get abrogated in global SIRT1 knockout  

[17] and brain-specific knockout mice [18]. In addition, 

SIRT5 and SIRT6 overexpress in the animals fed on CR 

diet [19, 20]. Moreover, SIRT6 overexpression in 

transgenic mice leads to lifespan extension. SIRT3 also 

mediates the effect of CR in vivo [21] and gained 

particular interest due to its localization in the 

mitochondria and associated with longevity in humans 

[22]. SIRT1’s role in CR was validated by a clinical study 

which reported its overexpression in the individuals fed 

on a CR diet [23]. Furthermore, a previous study made an 

interesting observation that the expression level SIRT1 

and SIRT3 in serum downregulates with age [24, 25].  

NAD+, which acts as a cofactor for several vital 

enzymes like Poly (ADP-ribose) polymerase (PARP), 

sirtuins, and CD38, decreases with sarcopenia [26]. A 

reduction in their enzymatic activity impairs 

mitochondrial function and decreases the muscle strength 

[27]. Deacetylation of peroxisome proliferator-activated 

receptor coactivator 1-α (PGC1α) by SIRT1 in vitro as 

well as in vivo lead to the stabilization of mitochondria in 

skeletal muscle [28].  During aging, satellite cells plays a 

vital role in the muscle repair via SIRT1 dependent 

manner [29]. Several in vivo studies suggests that 

sarcopenia is characterized by a decrease in the activity 

and expression of SIRT1 [30–32]. SIRT1 activity also 

decreases with aging in vivo, which causes PARP-1 

hyper-acetylation and NAD+ decrease consequently, 

which further inhibits activity of SIRT1. PARP-1 

acetylation also leads to the stimulation of NF-κB 

dependent gene expression [32], which leads to increase 

in inflammation, one of the hallmarks of sarcopenia.  

The role of sirtuins in frailty for the first time was 

determined by  Le Couteur et al in 2010 in their landmark 

study which concluded that there was no significant 

difference in the level of induced SIRT1 in SK Hep1 cells 

upon treatment with serum collected from frail and non-

frail individuals [33]. Authors also stated the possible 

existence of reverse association between lower SIRT1 

level and the robustness. In a clinical study, Kumar et al. 

determined the level of different sirtuin in the serum and 

observed that expression of SIRT1 and SIRT3 decreases 

with frailty [34].  

Surprisingly, Ma et al reported that a higher level of 

SIRT1 is present in frail individuals, an observation that 

was in contradiction to the previous study [35]. Another 

study observed that no significant association exists 

between SIRT1 single nucleotide polymorphisms (SNPs) 

and frail status. However, they detected the presence of a 

weak association between SNPs and conditions such as 

arthritis, cognitive impairment, and hearing impairment 

[36]. Overexpression of SIRT6 in vivo can reverse the 

age-associated decline in physical activity and prevents 

the onset of frailty at old age [37]. These studies indicate 

the possible mechanistic association between sirtuins and 
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frailty, although the results are contradictory. Therefore, 

further studies in multiple cohorts are essential to address 

these contradictions. 

 

Mechanisms  

 

In the previous section, we described the possible 

association between sirtuins and sarcopenia/frailty, 

although the mechanisms are still elusive. Based on the 

currently available evidence, we suspect the following 

mechanisms are responsible in driving the effects of 

sirtuins in sarcopenia as well as frailty. Figure 1 illustrated 

the mechanism suspect of different pathways of SIRT1 

and SIRT3 in pathophysiology of sarcopenia that ends up 

with frailty. 

 

Figure 1. Mechanisms by which SIRT1 and SIRT3 can influence the pathophysiology of sarcopenia. 

Oxidative stress: 

 

Several in vivo studies suggests that oxidative stress plays 

a key role in the induction of sarcopenia in different 

experimental models [38, 39]. In aged mice, over-

expression of an enzyme glucose-6-phosphate 

dehydrogenase (G6PD), responsible for reducing the 

oxidative stress, improved neuromuscular performance 



 Anwar M., et al.                                                                                                       Sirtuins and Frailty 

Aing and Disease • Volume 14, Number 1, February 2023                                                                              28 

 

[40]. Emerging clinical suggests that the level of oxidative 

stress is significantly higher in frail individuals in 

comparison to non-frail [41, 42]. Mice that lacks 

antioxidant Cu/Zn superoxide dismutase (SOD) exhibits 

sarcopenia [43]. SIRT1 deacetylate and activate 

FOXO3A in vitro, which enhances transcription of 

manganese SOD (Mn-SOD) [44, 45]. SIRT1 deacetylate 

and activates PGC-1α which enhances the expression of 

antioxidant likes MnSOD, catalase and glutathione 

peroxidase (GPx1) [28, 46–48]. Moreover, inhibition of 

SIRT1 leads to the overexpression of NADPH oxidase 

(NOX) subunits p22phox and NOX4 and increases the 

level of ROS production [49]. Deacetylation and 

activation of endothelial nitric oxide synthase (eNOs) by 

SIRT1 augment the NO production, which acts as a 

potential antioxidant [50]. Mounting evidence suggests 

that SIRT3, a mitochondrial sirtuin, plays a vital role in 

preventing ROS formation via different mechanisms.  It 

directly deacetylates SOD-2 at two lysine residues and 

enhances its activity [51–53]. Reduced glutathione, a 

potent antioxidant compound, generates from oxidized 

glutathione in a reaction that requires NADPH and 

thereby validates the role of SIRT3 as an antioxidant 

molecule [21]. 

 

Inflammation: 

 

The first experimental association between frailty and 

inflammation was well-established by Leng and 

colleagues, who observed the presence of a higher 

expression of serum interleukin 6 (IL-6) in frail 

individuals [54]. Another clinical study indicated that 

frailty is characterized by an increased level of a C-

reactive protein (CRP) and IL-6 [55–57]. Additional 

inflammatory markers like C-X-C motif chemokine 

ligand 10 (CXCL10) and neopterin also increases with 

frailty as per different clinical reports [58–60]. In 

addition, increase in the levels of IL-6 and CRP enhances 

the possible risk of sarcopenia [61]. Altogether, these 

studies point towards the crucial role of inflammation in 

the onset of sarcopenia and frailty. 

 

Mitochondrial dysfunction: 

 

Emerging evidence suggests that mitochondrial 

dysfunction leads to sarcopenia and frailty. For example, 

Andreux et al reported  a decrease in the level of proteins 

involved in the mitochondrial respiratory complex and an 

impaired phosphocreatine recovery in pre-frail 

individuals [62]. SIRT1 dependent deacetylation and 

activation of PGC-1α is a crucial pathway in the 

biogenesis of mitochondria [47, 63–65]. Activated PGC-

1α stimulate the expression of Nuclear Respiratory Factor 

1/2 (NRF1/NRF2) and transcription factor A, 

mitochondrial (TFAM), an essential step in mitochondrial 

biogenesis [66]. SIRT3 deacetylates several 

mitochondrial enzymes and regulates ATP production 

[67]. 

 

Sirtuin as a marker/ therapeutic target 

 

Sirtuins gained significant momentum recently, based on 

several studies which revealed their potential as a 

therapeutic target and biomarker. Notably, serum sirtuins 

can be proposed as a promising marker for sarcopenia and 

frailty but multiple cohort-based studies are warranted to 

establish the fact. SIRT1 and SIRT3 [68] displayed a 

stronger association with frailty and possess the potential 

to be used as biomarker to prevent the progression to bed-

bound phase by detect frailty at an early stage. However, 

future studies with a larger sample size in multiple cohorts 

is required to ascertain the role of sirtuins as a marker for 

the disease onset. Regular exercise and nutritional status 

had emerged as an essential intervention to prolong 

lifespan and increase muscle mass. Resveratrol, the 

activator of SIRT1 improves the effectiveness of exercise 

on the satellite cell activation in older individuals [46]. A 

previous study had shown a significant improvement in 

the state of sarcopenia by the effectiveness of physical 

activity on mitochondrial enzymes as well as muscle stem 

cells [69]. Resistance exercise improved muscle strength 

and mass and proved to be effective in reversing the status 

of sarcopenia [70–72]. Acute exercise activates SIRT1 

and not SIRT3, via phosphorylation of AMPK. Moreover, 

several sessions of exercise training can lead to activation 

of both SIRT1 and SIRT3, together with the improvement 

in mitochondrial oxidative function and biogenesis [73, 

74]. 

Resveratrol can prevent the tumour necrosis factor 

alpha (TNF-α) induced muscle cells atrophy by restoring 

Akt/mTOR/S6K and 4E-BP1 signaling in vivo [75]. 

SRT2104 dependent SIRT1 activation can alleviate the 

loss of muscle mass in mice [76]. Exercise and resveratrol 

inhibit age-related changes in the gastrocnemius muscle 

in mice, via activation of SIRT1, PGC-1 α and 5'AMP-

activated protein kinase (AMPK) [77, 78]. Resveratrol 

improves the forelimb grip strength in aged rats and 

confers protection to the cultured cells against peroxides 

[79, 80]. By activating SIRT1, myricanol alleviates 

dexamethasone-induced skeletal muscle wasting and 

weakness, which in turn enhances autophagy and 

promotes mitochondrial biogenesis [81]. Moreover, 

inhibition of SIRT1 is necessary for Toll-like receptor 9 

(TLR9) dependent muscle fibrosis and sarcopenia in aged 

mice [82]. Resveratrol also protects the mice against 

negative health consequences of a high-fat diet. 

Juzentaihoto, a Chinese herbal medicine, prevents muscle 

atrophy in senescence accelerated mouse (SAMP8) via 
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activation of SIRT1 [83]. Bring together, all these 

findings suggest that SIRT1 activation plays a pivotal role 

in the protection against age associated sarcopenia. 

However, the exact role of sirtuins in frailty is still elusive 

due to the lack of reliable animal models. Therefore, 

future studies aimed to develop an appropriate animal 

model of frailty to identify the exact mechanistic 

contribution of sirtuin in frailty and exploit them as a 

therapeutic target. Further longitudinal studies with frail 

aged individual having several age-related diseases like 

cognitive impairment, hypertension, diabetes etc are 

required for future studies 

 

Conclusions 

 

The current review summarized the putative role of 

sirtuins in sarcopenia and frailty pathogenesis in the older 

people. This review highlighted the pathways by which 

sirtuins can influence ROS production, inflammation and 

mitochondrial dysfunctions to exhibit a protective role 

against frailty and sarcopenia in the older and its 

therapeutic intervention in the future. However, a reliable 

biomarker and efficient therapeutic interventions is still 

not available for frailty. Sirtuins have unique features 

including its different complex catalytic mechanism and 

substrate specificities, which offer great opportunities for 

the development of drug. Several pharmacological and 

natural activators of sirtuins, particularly SIRT1 have 

been under investigation for long and have shown 

promising results. Although there are promising in vitro 

studies with convincing results, its potential as therapeutic 

intervention in vivo and clinical studies remains 

completely unknown. The previous reports suggests that 

sirtuins plays a protective role during the onset of frailty 

by preventing ROS accumulation, inflammation and 

mitochondrial impairment. However, it is certain that 

novel modulators targeting SIRT1 and SIRT3 will be 

explored in the near future, which requires further 

unravelling the molecular pathway involved in frailty and 

its component sarcopenia. Moreover, Sirtuins can serve as 

potential biomarker for early intervention and combat 

frailty and sarcopenia therapeutically. Based on the 

previous literature, we suggest that SIRT1 plays a 

protective role during frailty and its activation can provide 

a novel therapeutic approach. Moreover, future studies 

directed towards examining the role of SIRT1 as an early 

marker for frailty can provide us with an approach to 

arrest the progression into advanced stages. 
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