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ABSTRACT: Aging modifies risk in all cancers, but age is used as a clinical staging criterion uniquely in thyroid 

cancer (TC). The molecular drivers of age-dependent TC onset and aggressiveness remain poorly understood. 

We applied an integrative, multi-omics data analysis approach to characterize these signatures. Our analysis 

reveals that aging, independent of BRAFV600E mutational status, drives a significant accumulation of 

aggressiveness-related markers and poorer survival outcomes, most noticeably at age 55 and over. We identified 

that chromosomal alterations in loci 1p/1q as aging-associated drivers of aggressiveness, and that depleted 

infiltration with tumor surveillant CD8+T and follicular helper T cells, dysregulation of proteostasis- and 

senescence-related processes, and ERK1/2 signaling cascade are key features of the aging thyroid and TC 

onset/progression and aggressiveness in aging patients but not in young individuals. A panel of 23 genes, including 

those related to cell division such as CENPF, ERCC6L, and the kinases MELK and NEK2, were identified and 

rigorously characterized as aging-dependent and aggressiveness-specific markers. These genes effectively 

stratified patients into aggressive clusters with distinct phenotypic enrichment and genomic/transcriptomic 

profiles. This panel also showed excellent performance in predicting metastasis stage, BRAFV600E, TERT 

promoter mutation, and survival outcomes and was superior to the American Thyroid Association (ATA) 

methodology in predicting aggressiveness risk. Our analysis established clinically relevant biomarkers for TC 

aggressiveness factoring in aging as an important component.  
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Introduction 

 

Aging is considered a risk factor for a wide array of 

chronic malignancies. Even when race, sex, diet, and 

other variables are controlled for, clear disparities in 

cancer onset, prognosis, and clinical outcomes among 

different age categories have been well established [1]. 

Many features of the aging process (genomic instability, 

telomere loss, dysregulation of proteostasis, etc.) drive 

tumorigenesis/cancer progression or at least contribute to 

a pro-oncogenic cellular landscape [2]. Clinical evidence 

shows that aging in thyroid cancer (TC) is associated with 
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tumor size and stage, lymph node metastasis (LNM), 

distant metastasis stage, extrathyroidal extension (ETE), 

and histological type. Thus, elucidating the cellular and 

molecular basis for the impact of age on cancer is an 

active area of research [3, 4]. According to the cancer 

prognosis and staging guidelines established by the 

American Joint Committee on Cancer (AJCC), TC is the 

only cancer for which patient age is regarded as the 

principal prognosis/staging criterion, with the most recent 

guidelines (8th edition) using age 55 as staging cut-off [5]. 

This cut-off is also used as a predictor of aggressiveness 

and an AJCC staging classifier of overall survival (OS) 

outcome of thyroid patients. Patients younger than 55 are 

grouped into stages I or II, differentiated by the presence 

of distant metastasis. Patients older than 55 are stratified 

into stages I, II, III, or IV, according to tumor size, ETE, 

and the presence of regional and distant metastasis [6]. 

There remains some debate regarding this cut-off age  

(previous AJCC staging guidelines recommended an age 

of 45 [7-10]), but 55 is thought to increase accuracy of 

staging and overall outcome prediction [11-16] for 

differentiated TCs.  

Studies on other cancer types have highlighted 

important differences in the mutational profile of early- 

and late-age onset tumors. Distinct oncogenic processes 

and pathways are known to drive induction and 

aggressiveness in young and old individuals [3, 17]. For 

several cancer types, a clear age-dependent shift has been 

shown in hormone sensitivity, the expression of key 

regulatory genes (oncogenes, transcription factors [TFs], 

kinases, microRNAs, etc.), driver mutation burden, 

systemic/peritumoral immunity, DNA methylation, and 

genomic instability, and these factors are significantly 

associated with aggressiveness [18]. The development 

and clinical adoption of high-throughput sequencing 

technologies and the public availability of multi-omics 

datasets create opportunities for multidimensional 

profiling of the molecular landscape and drivers of TC 

aggressiveness. In this study, we carried out a deep 

integrative multi-omics analysis to uncover molecular 

signatures and pathways unique and common to young 

and aging TC patients. First, we characterized the age-

dependent distribution of TC aggressive tumor 

phenotypes and examined the validity of AJCC’s 

recommended age cut-off for staging and stratification of 

TC risk. We identified and functionally characterized the 

genomic, transcriptomic, and immune cell infiltration 

profiles of tumors, linking molecular signatures to 

relevant phenotypes and survival outcomes in different 

age categories. A rigorous functional analysis of 

signatures was carried out to identify critical pathways 

and processes that mediate the influence of aging on TC. 

Our analysis allowed the identification and validation of 

potentially useful prognostic markers for aging TC and 

the stratification of patients according to their 

aggressiveness risks and molecular features.  

 

METHODS 

 

Data 

 

The Genotype Tissue Expression files for the gene 

expression dataset and sample annotation information 

(“GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_ 

gene_tpm” and “GTEx_Analysis_v8_Annotations_ 

SampleAttributesDD.xlsx,” respectively) were retrieved 

from the GTEx portal. For this study, 653 thyroid samples 

were retrieved. 

The Cancer Genome Atlas (TCGA) dataset files 

“Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu_

_Level_3__RSEM_genes_normalized__data.Level_3.20

16012800.0.0.tar.gz,” “Merge_mirnaseq__ illuminahiseq 

_mirnaseq__bcgsc_ca__Level_3__miR_isoform_express

ion__data.Level_3.2016012800.0.0.tar.gz,” “Merge_ 

methylation__humanmethylation450__jhu_usc_edu__Le

vel_3__within_bioassay_data_set_function__data.Level

_3.2016012800.0.0.tar.gz,” “Merge_snp__genome_ wide 

_snp_6__broad_mit_edu__Level_3__segmented_scna_

minus_germline_cnv_hg19__seg.Level_3.2016012800.0

.0.tar.gz,” “Mutation_Packager_Oncotated_ Calls.Level 

_3.2016012800.0.0.tar.gz,” and “Merge_Clinical.Level_ 

1.2016012800.0.0.tar.gz” were collected through the 

FireBrowse platform. These files contained data on 

mRNA and miRNAs expression data, DNA methylation, 

copy number variation, and clinical information, 

respectively. For external validation, additional datasets 

(accession numbers GSE60542, GSE29265, GSE53157, 

GSE129 879, and GSE65074) were obtained from the 

Gene Expression Omnibus (GEO). 

 

Differential expression analyses 

 

Differential Gene Expression (DGE) analysis was 

performed with the DESeq2 package [19] with the 

likelihood ratio statistic (LRT) test, adjusting for gender 

and race in the TCGA cohort or with gender and Hardy 

score in the GTEx cohort. Differentially expressed mRNA 

genes (DEGs) and miRNAs (DEmiRNAs) are defined as 

genes with an adjusted p-value < 0.05 and an absolute 

value of the log2 fold change ≥ 1 between comparisons. 

The Aging Cohort and Young Cohort are samples from 

patients aged ≥ 55 and < 55, respectively. Differentially 

expressed genes/miRNAs that are unique to specific 

cohorts were identified by filtration steps and 

comparisons via Venn diagram analysis. Dysregulated 

genes specific to aging or young cohorts/samples are 

prefixed by AC (aging cohort) or YC (young cohort).   
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Clinical and molecular parameter association analyses 

 

Univariate and multivariate binomial logistic regressions 

were performed with the glm R function (glm [family = 

“binomial”]). Multivariate analyses adjusted for gender 

and race, or for gender, race, LNM, ETE, tumor size, and 

histological type. Pearson’s chi-square tests (chisq.test 

function), Kruskal tests (Kruskal.test function), and 

Spearman correlations (cor.test function) were also used. 

Only values with adjusted p-value < 0.05 are considered 

significant in all further downstream analysis. 

Survival data were analyzed with a Cox regression 

model and likelihood ratio test, and plotted with as 

Kaplan-Meier curve (survminer [20] and survival [21] R 

packages, p-value estimated with the log-rank test).  There 

were no death events in the young cohort, so OS and 

disease-specific survival (DSS) were not systematically 

analyzed with a Cox model, since it would influence the 

regression, leading to a false hazard ratio (HR) estimation 

and a false Wald p-value.  

To estimate the prognostic potential of the identified 

gene panel, a prediction model was designed with a linear 

discriminant analysis (LDA) regression performed with 

LDA R function (MASS [22] R package) for each clinical 

parameter analyzed and a Cox regression model for 

survival data. The prediction values (computed with the 

predict () function in R) were used for the estimation of 

sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV). Receiver Operative 

Characteristics (ROC) and area under curve (AUC) were 

estimated with OptimalCutpoints [23] R package. 

Concordance or C-index [24] and Brier score [25] were 

calculated with the concordance.index R function 

(survcomp [26] R package) and BrierScore R function 

(DescTools [27] R package), respectively. Statistical 

differences between AUC and C-index were estimated 

using the DeLong [28] Test (roc.test function – pROC 

[29] R function) and cindex.comp [30] R function 

(survcomp R package).  

RISK scores were calculated according to the 

following equation: LDA or Cox beta-coefficient: 
∑ 𝒙𝒊 ∗  𝒊, with 𝑥𝑖 = expression value of DEG I, and 𝑖= 

regression coefficient of AC-DEGs/YC-DEGs  𝑖  for a 

specific clinical parameter analysis (from LDA or Cox 

regression). 

 

Identification of the aging cancer aggressiveness 

signature(s) 

 

To identify a signature of mRNA genes/miRNAs that are 

aging cohort-specific and associated with an aggressive 

phenotype, we ran DGE analyses with a four-step 

methodology. Aging-cancer (AC) specific genes/ 

miRNAs were selected based on three criteria. First, 

genes/miRNAs had to present a significant adjusted p-

value and fold change in cancer vs. normal comparison 

for the aging counterpart cohort (19 cancer vs. 19 normal). 

Secondly, genes/miRNAs did not have to present a 

significant adjusted p-value and fold change in the 

comparison of cancer vs. normal in the younger 

counterpart cohort (38 cancer vs. 38 normal), or the 

comparison of old vs. young in the normal cohort (19 old 

vs. 38 young). Only genes/miRNAs with an absolute 

value of the log2 fold change > 1 were selected. 

To identify genes/miRNAs signatures associated with 

TC aggressiveness, we adopted a robust methodology for 

the whole cohort, including young and old tumor samples. 

First, DEG analysis was performed with binomial clinical 

parameters, adjusted for gender and race, with the 

DESeq2 package; continuous variables were stratified as 

low or high for values lower or higher than their means, 

respectively. Among the clinical parameters were clinical 

features/markers (LNM, ETE, tumor size, distant 

metastasis, histological type, neoplasm focality, primary 

tumor laterality, etc.); molecular markers (BRAF and 

TERT promoter mutation status, differentiation score; 

survival indicators (disease-free survival [DFS], 

progression-free interval [PFI], OS, DSS, and disease-free 

interval [DFI]); and markers related to genomic instability 

and immunity. Genes/miRNAs had to present an adjusted 

p-value <0.05 for at least two of the following parameters 

to be further selected: LNM (N1 vs. N0), ETE (present vs. 

absent), tumor size (≥1 cm vs. <1cm), and aggressive 

histological type (T/CPTC vs. FPTC). Hierarchical 

clustering was performed to cluster the genes/miRNAs 

according to their transformed adjusted p-value (log2 

adjusted p-value with the sign matching the 

corresponding log2 fold change) for each parameter 

analyzed. This step was crucial to filter only the 

genes/miRNAs that were upregulated in the cancer cohort 

and positively associated with aggressive parameters, or 

that were downregulated in the cancer cohort and 

negatively associated with aggressive parameters.  

Since an aim of the study was to decipher the TC 

aggressive phenotype related to aging, a third selection 

step was performed to collect only the genes/miRNAs that 

were dependent on aging to be associated with an 

aggressive phenotype. Hence, an age, gender, and race-

adjusted multivariate analysis was also performed. For 

each parameter analyzed, genes/miRNAs were further 

selected if they presented an adjusted p-value < 0.05 in the 

gender/race-adjusted analysis and if they presented an 

adjusted p-value>0.05 (non-significant) in the 

age/gender/race-adjusted analysis.  

Finally, an internal validation was performed in the 

160 aged tumor samples to validate the potential of the 

AC-DEGs or DE miRNA-AC selected to be associated 

with an aggressive phenotype in the aging cohort. Gender 
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and race-adjusted multivariate analyses were performed 

for nine specific parameters reflecting a clinical 

aggressive phenotype and worse outcome: LNM (N0 vs. 

N1), ETE (present vs. absent and gross vs. non-gross), 

histological type (C/TPTC vs. FPTC and TPTC vs. 

F/CPTC), tumor size (≥1 cm vs. <1cm and ≥2 cm vs. 

<2cm), differentiation score (low vs. high), BRAF and 

TERT promoter mutation status (MUT vs. WT), DFS, PFI, 

OS, and DSS. A gene was selected if it presented at least 

one significant association (adjusted p-value < 0.05). 

This methodology was chosen after adjusting 

parameters for each step described previously. 

Multivariate or univariate analysis was carried out as 

follows. Step 1: whole cohort, counterpart, or paired 

cohort analysis; Step 2: genes/miRNAs significantly 

associated with 0, at least 2, or at least 3 on the 4 

parameters proposed; Step 3: hierarchical clustering with 

all the parameters analyzed or only the 

clinical/pathological parameters; Step 4: age as a 

continuous variable or as a binomial variable, aging 

dependence described if the adjusted p-value was non-

significant or superior to the corresponding p-value 

obtained from the gender and race multivariate analysis. 

All possibilities were tested, and the final gene signatures’ 

propensity to predict aging aggressive phenotype and 

worse outcomes were assessed with Receiver Operator 

Characteristics area under curve (AUC) estimation for the 

parameters described in Step 4. For the survival data, 

AUCs were also compared to those obtained with the 

ATA risk stratification, and a DeLong test evaluated the 

significant difference between the two AUCs analyzed. 

The signature leading to the highest AUC and most 

significant DeLong p-value was chosen. A similar study 

was performed in the young cohort, and 65 DEGs were 

selected.  

 

Stratification of samples according to the aggressive 

panel of genes identified 

 

A principal component analysis (PCA) was performed 

with the 23 DEGs across the aging cohort using the 

FactoMineR [31] and factoextra [32] R packages. Next, a 

PCA aging score was calculated according to the 

equation:  

𝑊 =  ∑(|𝐿𝑖𝑗| ∗ 𝐸𝑖) 

𝑃𝐶𝐴 𝐴𝑔𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =  
∑ 𝑋𝑖 ∗𝑊𝑖

∑ 𝑊𝑖
 

 

with Lij, loading value of the ith variable of grouping on jth 

PC, Ei, eigenvalue of the jth PC, Wi, weight of the ith 

variable, Xi, the normalized value of ith variable. Only PCs 

with E > 1 were selected.  

A score > 0 characterized samples with a more 

aggressive phenotype (MAAC = more aggressive aging 

cluster) and a score < 0 characterized samples with a less 

aggressive phenotype (LAAC = less aggressive aging 

cluster). A similar analysis was performed for the young 

cohort from the 65 aggressiveness-related genes, 

stratifying young tumor samples into a more aggressive 

young cluster (MAYC) and a less aggressive young 

cluster (LAYC). 

 

Immune infiltration percentage estimation 

 

Immune infiltration percentages were estimated using the 

CIBERSORT algorithm [33] with the 23-gene signature, 

identifying 22 human hematopoietic cell phenotypes.  

 

KEGG pathways and GO entries enrichment analyses 

 

Pathway enrichment analyses were performed with 

pathfindR package [34] using the active-subnetwork-

oriented enrichment method. For the TCGA and GTEx 

cohort analyses, DEGs were used as input. Next, for each 

sample, an agglomerate z-score was calculated for the 

enriched pathways identified. Using the agglomerate z-

scores, logistic regressions were performed to select only 

the pathways significantly associated with the condition 

analyzed (adjusted p-value < 0.05).  

Each aging comparison was meticulously evaluated 

by extracting only the pathways that were specific to 

aging. Similar analyses were performed in the younger 

cohort, and pathways that were common in both cohorts 

(with the same direction of enrichment) and were not 

significantly different (with a Kruskal test p-value) were 

removed from the list of “aging-related” pathways. 

Pathways were clustered following a PCA analysis 

computing the agglomerate z-scores across the samples 

analyzed. 

To summarize the enrichment pathway analyses, 

normalized enrichment scores (NES) for each pathway 

were calculated in all samples (in the normal, aging, and 

young cohorts). Briefly, the list of genes included in each 

entry analyzed was gathered with KEGGREST [35] and 

biomaRt [36] R packages. With the function ssgsea () 

(corto R package [37]), a score was estimated for each 

input gene list after normalization of their expression. 

Normalized enrichment scores (NES) were compared 

using the EdgeR [38] R package to estimate the significant 

difference observed during aging/young tumor 

progression and according to the aggressive phenotype 

hierarchy. Adjusted p-value < 0.05 was considered 

significant. 
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Figure 1. Aging-induced thyroid transformation landscape. (A) Circular plot representing (from outer to inner) (1) Log2 fold 

change of the DEG/miRNAs expression between tumor vs normal counterpart samples, (2) the Aging-Cancer specific DEG/miRNAs-

AC, and the frequency of gene copy number (3) gain (CNV > 0.3) or (4) loss (CNV < -0.3) in aging cancer cohort. Similar analysis 

for the young cohort comparison is plotted in Supplementary Fig. 5. (B) Heatmap representing a hierarchical clustering of ageing 

tumors and normal paired samples according to the aging-cancer specific 198 DEG/miRNAs (AC-DEGs). (C) PPI and regulatory 

network of TFs, miRNAs and LncRNAs strongly controlling the 198 AC- DEG/miRNAs. Only TF/miRNA/DEG, TF/LncRNA/DEG, 

or miRNA/LncRNA/DEG loops and PPI edges with spearman correlation > |0.5|, unique to the aging cohort, were selected. (D) Dot 

plots representing the top ten most significant KEGG (top) and GO-BP (bottom) pathways selected after an enrichment analysis, 

according to their fold change, corresponding adjusted p-value, and their number of DEGs involved. Only pathways involving AC-

DEGs and unique tumor-aging or significantly different from the younger comparison were finally selected. (E) Network representing 

the spearman correlation between the enriched pathways in the aging cohort, with the node size depending on the pathway agglomerate 

z-score’ fold change (Old cancer vs Old normal samples). Two clusters were identified through a PCA computing the pathways’ 

agglomerate scores among the samples. Only the KEGG and GO-BP entries with the highest contribution to the first two PCA were 

labeled. (F) Bar plot representing immune cell infiltration mean in the young and old samples cohorts.  * Adjusted p-value < 0.05. 

CNV, Copy number variation, FC, Fold change. PPI, Protein-protein interaction; TF, Transcription factor. 

Protein-protein interaction (PPI) and regulatory 

networks 

 

Protein-protein interaction (PPI) data, long non-coding 

RNA (lncRNA) interactions, and TFs regulations were 

collected with the STRING [39] database, the RNAInter 

[40] database, and “tftargets.rda” file (R Curl R package 

including the Marbach2016, ENCODE, and ITFP 

databases https://github.com/slowkow/tftargets), 

respectively. miRNA interaction prediction was 

https://github.com/slowkow/tftargets
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performed on 3’UTR, CDS, 5’UTR, and promoter with 

the MirWalk.2.0 [41] platform. Spearman correlations 

were calculated, and only correlations greater than |0.5| 

were selected. Loops between miRNA/TF/DEG, 

miRNA/LncRNA/DEG, and TF/LncRNA/DEG were 

identified and plotted in networks. “Inhibition” and 

“activation” were characterized according to the 

correlation between regulators and DEGs. miRNAs were 

considered activators if interactions on the promoter were 

identified with a positive correlation. Conversely, 

miRNAs were considered inhibitors if an interaction on 

3’UTR, CDS, or 5’UTR was described with a negative 

correlation. 

 

Copy number variation (CNV) analysis 

 

CNVs were calculated with GISTIC.2.0 [42]. Alterations 

were identified as a gain with a CNV > 0.3 and as a loss 

with CNV < -0.3. The frequency of loss and gain were 

then calculated for each group of samples studied and 

expressed as the ratio of the number of samples presenting 

a gain or a loss to the total number of samples. 

Frequencies higher than 2% were considered relevant. 

Pearson’s chi-square tests (with chisq.test R function) 

were performed to identify which loci and genes were 

significantly differentially altered across the two groups 

of samples. In parallel, a Spearman correlation was run 

between the CNV and the expression of genes. This step 

was crucial to select genes whose expression is affected 

by their copy number alteration. 

 

Plot design 

 

Box plots, forest plots, dot plots, volcano plots, and bar 

plots were designed with ggplot2 [43] R package. Kaplan-

Meier curves were plotted with ggsurvplot (survminer R 

package). ROC curves were drawn with ggplot2 

geom_roc function (plotROC [44] and ggsci [45] R 

packages). PCA plots (individuals and variables), 

heatmaps, and circular plots were designed with 

factoextra, pheatmap [46], and circlize [47] R packages, 

respectively. Finally, networks were built with Cytoscape  

3.8 [48]. 

 

RESULTS 

 

Age as a prognostic marker for thyroid carcinoma 

aggressiveness 

 

We stratified the 481 samples into five age groups: < 35, 

35–44, 45–54, 55–64, and > 65, to investigate the 

association between age and aggressiveness phenotypes 

and validate the selection of age 55 as a prognostically 

useful cut-off for staging using the TCGA dataset. We 

then performed logistic regression adjusting for gender 

and race. With aging, an independent higher risk of 

aggressive histological subtypes (TPTC vs. C/FPTC, 

OR=3.0, p=1.1 x 10-2), presence of ETE (present vs. 

absent, OR=2.3, p=2.0 x 10-3; gross vs. non-gross, 

OR=13.3, p=1 x 10-3) and the presence of TERT promoter 

mutation (OR=12.5, p=9.1 x 10-6) (Supplementary Fig. 

1A) was observed. Worse prognosis, as defined by lower 

DFS, PFI, OS, and DSS, was also observed with aging 

(Supplementary Fig. 1B, C). Their hazard ratios (HR, 

probability of event occurrence as death or recurrence) 

were significantly high (DFS, HR=2.2, p=1.7 x 10-1; PFI 

(HR=2.2, p=4.0 x 10-3; OS, p=5.1 x 10-7; DSS, p=4.7 x10-

4) (Supplementary Fig. 1C). A comparison of samples age 

≥ 55 vs < 55 also showed a higher risk of key 

aggressiveness parameters in the aging samples 

(Supplementary Fig. 1D).  We also compared stages and 

risk categories within AJCC (8th edition) and ATA 

guidelines in the whole TCGA cohort, stratifying the 

cohorts by age. As shown in Supplementary Fig. 2, neither 

staging system presented a significant difference in 

outcomes between stages/risk categories in either age 

cohort (< 55 and ≥ 55). This was particularly true 

comparing survival measures between the AJCC stage II 

and III and the ATA’s “low” and “intermediate” 

reoccurrence risk levels. Thus, stratifying by age alone 

was insufficient in predicting survival and recurrence 

outcome.  

 

The molecular landscape of aging-induced 

tumorigenesis 

 

Changes in the molecular landscape of cells are known to 

be induced by carcinogenesis and by aging/senescence [2, 

49]. To characterize these at the genomic level in TC, we 

carried out an analysis of CNV to determine age-related 

structural changes in the genome in TC samples. Using 

the GISTIC tool, we observed that TCs (independent of 

age) did not present deep genomic alterations. In 475 

samples with CNV information, only 5,369 genes in 167 

different loci showed a CNV > 1 (amplification) in 1–6 

samples, and 680 genes in 66 different loci showed a CNV 

less than -1 (loss) in 1–4 samples. Hence, we studied 

CNVs by age, defining a shallow gain as CNV > 0.3 and 

a shallow loss as CNV < -0.3. The aging tumor cohort 

presented specific gains on the 1p, 4p, 5p, 6p, 14q, 19p/q, 

and 20p/q chromosomal loci and specific loss on the 2p/q, 

8p/q, 9p/q, 10p/q, 11p/q, 16q, 17p, 19p, and 21p/q loci 

(Fig. 1A). Losses on 9p/q, 10p/q and 17p are particularly 

important, as these chromosomal arms host the tumor 

suppressor genes CDKN2A, PTEN, and TP53, 

respectively.  
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Figure 2. The 23-AC-DEGs signature is prognosis marker for ageing thyroid cancer patients. (A) Workflow for selection of 

biomarker panel as Ageing-Cancer specific / Ageing dependent aggressive DEGs in the old tumor cohort. (B) Receiver operator 

characteristics (ROC) curves estimating the accuracy of the 23-AC-DEGs signature prediction for aggressive clinical parameters. 

(C). Logistic regression analyses with the 23-AC-DEGs risk score with aggressive clinical parameters, in a univariate and 

multivariate (adjusted to gender and race) analyses. (D). Kaplan-Meier curves showing probability of survival according to the 23 

AC-DEGs derived risk score dependent stratification of samples for disease-free survival (left), progression-free interval (middle), 

and overall survival (right). Log-rank p-value significant < 0.05. (E) Receiver operator characteristics (ROC) curves for the accuracy 

of the 23-AC-DEGs signature prediction for outcome parameters, comparing with ATA risk stratification prediction (disease-free 

survival – left, Progression-free interval – middle) and AJCC staging (overall survival – right). De Long p-value estimating 

difference between two area under curves, significant < 0.05.  
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Figure 3. The 23-AC-DEGs stratified aging-tumor samples in two distinct clusters. (A) Principal component analysis representing 

the significance of the 23 AC-DEGs to explain the heterogeneity observed among the old tumor samples cohort (left) and their 

correlation (right).  (B) heatmap representing their Spearman correlation matrix of the expression of the 23 AC-DEGs in the aging tumor 

cohort samples. (C) PCA aging score computed from the expression of the 23 DEGs independent of association with tumor features or 

clinical parameters.  (D). Logistic regression analyses between the 23-AC-DEGs PCA Aging score and aggressive clinical parameters, 

in a univariate and multivariate (adjusted to gender and race) analyses.  (E) Stratification of the old tumor cohort in 2 clusters based on 

the PCA ageing score, LAAC (less aggressive ageing cluster) and MAAC (more aggressive ageing cluster). Chi2 test p-value to evaluate 

the significant difference of the clinical parameters distribution according to the 2 aging clusters) (right), and by a (left bottom). (F) 

Kaplan Meier curves representing the survival probability according to the two aging tumor sample clusters for disease-free survival, 

progression-free interval, overall survival, and disease-specific survival (Log rank test p-value). p-values significant < 0.05.  

To identify transcriptome-wide changes in gene 

expression, DGE analysis was carried out comparing 19 

aging tumor samples with their normal counterparts, also 

adjusting for gender and race (Supplementary Fig. 3A). 

We performed similar analyses for young (tumor vs 

normal) samples (Supplementary Fig. 3B) and normal 

samples (≥55 vs <55) (Supplementary Fig. 3C). Venn 

diagram analysis was carried out to identify genes 

dysregulated only in either cohort or common to both 

(Supplementary Fig. 3D). A total of 197 AC-DEGs and 1 

AC-DEmiRNA (miR-9-5p) were found to be unique to 

the aging-cancer cohort (≥ 55) (Fig. 1A–B, 

Supplementary Fig. 3D–F). Among the AC-DEGs, we 

identified potential regulators of the aging transcriptome: 

three lncRNA (two downregulated [C6orf176 and 

LOC285796] and one upregulated [MIAT]), four 

pseudogenes (two downregulated [CETN4P and 

AGAP11] and two upregulated [EMR4P and 

SIGLECP3]), and 15 TFs or co-TFs (one downregulated 

[NUPR1] and 14 upregulated including FOXM1, EZH2, 

E2F8, HOXA11, and SOX11). In the aging cohort, 1,656 

genes presented a CN gain with a frequency > 2% and had 

a positive correlation between their expression and their 

copy number. Of these, 154 genes had a significant 

positive fold change (log2FC >1) in the aging tumors 

compared to their normal counterparts. Interestingly, 

seven of these genes (ASPM, CENPF, EXO1, KIF14, 

NCF2, NEK2, and ZNF695) were characterized as AC-

DEGs. They were localized in the q arm of chromosome 

1 and presented a copy number gain of 9% in the aging 

tumors. Copy number loss influenced the expression of 
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986 genes, and 18 presented a significant negative fold 

change (log2FC < -1) in aging tumors (Fig. 1A). 

Comparing markers of genomic instability between 

old and young cancer cohorts, aging tumors showed a 

significantly higher rate of tumor mutational 

burden/mutation density (Kruskal-Wallis test, p=2 x 10-

16), number of single nucleotide variant (SNV) 

neoantigens (p=9.7 x 10-15), number of single nucleotide 

polymorphisms (SNPs) (p=5.2 x 10-9), silent (p=6.1 x 10-

12) and non-silent (p=7.2 x 10-16) mutation rate, fraction 

altered (p=6.7 x 10-4), aneuploidy score (p=4.8 x 10-5), 

and homologous recombination defect score (p=2.7 x 10-

3) (Supplementary Fig. S4). 

 

Interaction network and functional role of the 198 AC-

DEGS/DEmiRNA in aging thyroid tumorigenesis 

 

To identify potential regulatory interactions between AC-

DEGs, a protein-protein interaction (PPI) network was 

built highlighting PPI with Spearman correlation between 

nodes > |0.5| using the STRING platform. A regulatory 

network using differentially expressed TFs, lncRNAs, and 

miRNAs regulating the AC-DEGs was constructed. Only 

loops between AC-DEGs/TFs/miRNAs, AC-DEGs/ 

TFs/lncRNAs, and DEGs/lncRNAs/miRNAs with 

Spearman correlation > |0.5| were selected. We observed 

two subgroups of AC-DEGs interactomes. The first were 

tightly regulated, through MELK, BRCA2, KIF14, BUB1, 

and TOP2A, by five TFs (NFE2L3, RUNX1, RUNX2, 

BHLHE40, and the aging cancer-specific SOX11), two 

LncRNAs (ST7OT1 and CDKN2BAS), and four miRNAs 

(miR-21-5p, miR-363-3p, miR-873-5p, and miR-138-1-
3p). The second interactome represented by NCF2, 

CLEC4A, CLEC7A, MSR1, ITGAM, ITGAX, 

CD300LF, CD68, FGR, and CCR1 were controlled by a 

plethora of regulating TF/miRNA, TF/LncRNA, and 

miRNA/LncRNA loops (Fig. 1C).  

Next, pathway enrichment/gene ontology analyses 

were performed to identify specific aging-related cancer 

roles for the AC-DEGs. We performed a similar analysis 

in the younger cohort (Fig. 1D, Supplementary Fig. 5A–

D). Pathways were selected based on two criteria: First, 

pathways had to present a significant association with 

malignancy status, estimated by a logistic regression 

using the pathway agglomerate z-scores; second, 

pathways had to be specific, have an opposite behavior, or 

be significantly different from the other age comparisons. 

Compared to aging normal tissue, aging tumors were 

specifically enriched in 20 KEGG pathways, 30 GO-BP 

(Fig. 1D), 19 GO-MF, and 12 GO-CC (Supplementary 

Fig. 5A) entries. Based on the correlation between 

pathways and processes enriched uniquely in the aging 

cohort, two subclusters of related processes were 

identified (Fig. 1E). The first subnetwork was related to 

mitosis progression and DNA damage entries (“mitotic 

spindle assembly,” p=6.1 x 10-5; “regulation of 

cytokinesis,” p=4.3 x 10-7; “Fanconi anemia pathway”, 

p=7.0 x 10-8; “homologous recombination,” p=6.4 x 10-5; 

“cellular response to DNA damage stimulus,” “mitotic 

cytokinesis,” “mitotic cell cycle”). The second 

subnetwork was enriched in entries associated with cell 

cycle regulation and immune response (“Cellular 

senescence,” p=1.67 x 10-7; “natural killer cell mediated 

cytotoxicity,” p=2.5 x 10-5; “negative regulation of 

inflammatory response to antigenic stimulus,” p=5.1 x 10-

7; “regulation of cell cycle”). This second subnetwork was 

also characterized by the Fc-gamma receptor, chemokine, 

and NF-B signaling pathways.  

 

Immune cell infiltration landscape in the cancer-aging 

samples 

 

The interaction between immune cells and the tumor 

microenvironment (TME) is important during 

tumorigenesis and is a key determinant in cancer 

trajectory and treatment outcomes [50]. To study the 

immune landscape in aging TC, we estimated the 

infiltration percentage of 22 immune cells in the TCGA 

cohort using the CIBERSORT algorithm [33]. Tumors in 

the aging cohort were enriched in M0 macrophages, mast 

cells, resting dendritic cells, and regulatory T-cells 

(Tregs) but also showed a decrease in CD8+ T-cells and 

T-cell follicular helpers. Young tumors showed an 

enriched activation of NK cells, dendritic cells, and 

macrophage M2, and an impoverishment or decrease in B 

(naïve and memory), activated T-cell CD4 memory, mast 

cells, and macrophage M1 (Fig. 1F). Taken together, these 

results highlight specific aging-dependent pathways in 

thyroid tumorigenesis associated with a deregulation of 

the cell cycle, cell death, DNA damage repair, and 

immune response.  

 

Identification of an aging-cancer and aging-dependent 

aggressive panel in the aging cohort 

 

Through filtration and internal validation steps in the 

aging cohort, the 198 AC-DEGsAC-DEmiRNA were 

filtered to 23 aging-specific and aging-dependent genes 

associated with aggressive phenotypes (Fig. 2A). A 

similar workflow applied to the young cohort identified 

64 genes as cancer-specific and dependent on age <55 for 

expression. From univariate and multivariate analysis, the 

23 DEGs showed high accuracy in predicting clinical 

parameters and were significantly associated with a higher 

chance of the presence of LNM, ETE, undifferentiated 

state, BRAFV600E and TERT promoter mutation with 

coefficient-indexes (C-index) > 0.8 (Fig. 2B–C). Most 

genes in this panel showed a significant positive fold 
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change associated with higher ATA risk strata, important 

tumor features and clinical parameters, markers of 

genomic instability, and immune cell and response 

indicators (Supplementary Fig. 6A–C). Importantly, 

significant positive fold change association between 

genes found in this panel, such as MSR1, FGR, LRRC25, 

and CLEC4A and BRAF mutations, were observed. Given 

the association between the individual 23 AC-DEGs and 

aggressiveness phenotypes and outcome in aging patients, 

we tested their potential of prognostication as a unique 

signature. A risk score, named 23-Risk score, was 

computed using the expression values of the 23 DEGs 

weighted by their regression coefficient. We observe that  

this score could predict with high accuracy the presence 

of LNM, (OR=5.0, p=7.2 x 10-8), ETE (present vs. absent, 

OR=4.9, p=2.3 x 10-8; gross vs. non-gross (OR=3.0, 

p=7.03 x 10-6), distant metastasis (OR=3.8, p=2.0 x 10-3), 

histological type (T/CPTC vs. FPTC, OR=7.09, p=1.1 x 

10-7; TPTC vs. F/CPTC, (OR=3.0 p=6.47 x 10-6), 

BRAFV600E (OR=8.6, p=2.4 x 10-6) and TERT promoter 

(OR=4.12 p=1.9 x 10-6) mutations, and undifferentiated 

score (OR=5.9, p=1.9 x 10-7) with coefficient-indexes (C-

index) > 0.8 (Fig. 2B-C). 

 

A 23 AC-DEGs signature as a prognosis marker for 

aging thyroid carcinoma patients 

 

Given the association between this 23-gene panel and 

aggressiveness phenotypes in aging patients, we tested the 

potential of the derived RISK score in predicting TC stage 

and reoccurrence risk in comparison to both AJCC and 

ATA staging and reoccurrence risk markers. First we 

observe that a significantly higher RISK score was 

associated with a higher lymph node stage, (p=5.8 x 10 -

15), ETE (present vs. absent, p=1.9 x 10-13; gross vs. non-

gross (p=1 x 10-5), distant metastasis stage (p=5.8 x 10-4), 

BRAFV600E (p=2.7 x 10-12) and TERT promoter (p=3.5 x 

10-10) mutations, and undifferentiated score (OR=5.9, 

p=1.9 x 10-7) (Supplementary Fig. 7A-C). Patients with 

higher RISK scores had significantly lower survival 

outcome measures than those with lower RISK scores: 

DFS (HR=2.72 p=1.5 x 10-12), PFI (HR=2.7, p=9.5 x 10-

12), and OS (HR=2.7, p=4.7 x 10-7) (Fig. 2D). We observe 

that the 23-AC-DEGs signature showed significantly 

superior performance in predicting patient outcomes 

compared to the ATA approach for recurrence prediction. 

The C-index estimates were 0.95, 0.86, and 0.95 for DFS, 

PFI, and OS, respectively. A DeLong test comparing the 

AUCs for both risk prediction methods validated the 

significance of the more accurate predictions of the 23 

DEG signature with all p-values < 0.05 (Fig. 2E). These 

results strongly suggest that the 23 AC-DEG panel is a 

robust prognostic marker panel that can complement 

established clinical guidelines and help to improve 

staging and risk evaluation. 

 

The 23 AC-DEGs stratified the aging tumors into two 

clusters: a more aggressive aging cluster (MAAC) and a 

less aggressive aging cluster (LAAC) 

 

A PCA aging score was calculated summarizing the 

weight of the contribution of each AC-DEG to explain the 

samples heterogeneity. Compared to the RISK scores 

computed previously, the PCA aging score was directly 

calculated from the expression of the 23 DEGs, 

independent of their association with clinical parameters. 

Unsupervised clustering of the 23 AC-DEGs stratified the 

aging tumors into two subclusters with varying PCA 

scores. These genes could explain more than 65% of the 

heterogeneity observed across the aging tumors. 

Furthermore, the expression of these genes was positively 

correlated (Fig. 3A-B). Each subcluster had a distinct 

association with clinically aggressive phenotypes, 

immune cell infiltration, and genomic profiles 

(Supplementary Fig. 6A-C). The KIF4A subgroup, 

including KIF4A, KIF14, MELK, NUSAP1, SGOL1, 

HMMR, CENPF, ERCC6L, DIAPH3, NEK2, and TRF2 

(sorted according to their contribution to sample 

heterogeneity), showed the strongest association with 

aggressiveness markers (Supplementary Fig. 6A) and 

immune cell infiltration (Supplementary Fig. 6C). 

Conversely, the similarly sorted NCF2 subgroup, 

including NCF2, CLEC4A, ITGAM, LRRC25, CD300LF, 

FGR, TMEM158, MMP13, MSR1, and HRH4, displayed 

a significant independent association with markers of 

genomic instability (Supplementary Fig. 6B). We 

observed that the PCA aging score was also associated 

with aggressiveness markers in univariate and 

multivariate (adjusted for gender and race) regression 

analyses (Fig. 3C). A significantly higher PCA aging 

score was observed in patients with LNM (p=2.0 x 10-3), 

tall-cell aggressive histological variant (p=2.6 x 10-2), 

undifferentiated state (p=2.1 x 10-4), BRAFV600E (p=5.0 x 

10-3), and TERT promoter mutations (p=1.7 x 10-2), DFS 

(p=6.0 x 10-3), PFI (p=3.0 x 10-3), OS (p=8.0 x 10-3), and 

DSS (p=1.6 x 10-2). Additionally, a higher PCA aging 

score corresponded with poorer survival outcomes 

(Supplementary Fig. 8A, B). Based on this score, samples 

were stratified into two clusters: a MAAC with a PCA 

aging score > 0 and a LAAC with a PCA aging score < 0, 

0 being the mean PCA aging score (Fig. 3D). These two 

clusters significantly differentiated samples according to 

their clinical aggressive phenotype based on regression 

analysis and Pearson’s Chi-squared test (Fig. 3E). 

Furthermore, MAAC tumors presented a higher risk of 

recurrence with a five-year survival rate of 65% (CI-

95%=40–82% vs. 87% [CI-95%=75–94%], p=2.4 x 10-2) 
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(Fig. 3F). A comparable analysis for the 64 DEGs 

identified as unique to the young cohort was carried out 

and showed a significant association between the 

expression of these genes and clinical aggressiveness-

related phenotypes in both univariate and multivariate 

analyses (Supplementary Fig. 9A–D). We also observe 

that PCA scores computed from the DEGs-YCs stratified 

young samples into two clusters: a less aggressive young 

cluster (LAYC) and a more aggressive young cluster 

(MAYC). However, there were no differences in survival 

outcomes between the two clusters (Supplementary Fig. 

9E). These results suggested that two aging 

subpopulations with distinct tumor pathology and patient 

outcome can be identified. 
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Figure 4. Transcriptomic landscape induced by the 23 AC-DEGs.  (A) Heatmap representing the z-score mean of 23 

AC-DEGs expression in each cluster. Arrows represent a significant FC. (Boxplot visualization of the expression of the 

23-AC-DEGs across the whole thyroid samples is shown in Supplementary Figure 17A). (B) PPI and regulatory network 

of TFs and miRNAs strongly regulating the 23 DEGs. Only TF/miRNA/DEG loops with spearman correlation > |0.5| 

were selected (no LncRNA loops identified). (C) Dot plots representing the 10th first most significant KEGG (top) and 

GO-BP (bottom) pathways selected after an enrichment analysis comparing MAAC vs LAAC, according to their fold 

change adjusted p-value. Only pathways unique of tumor-aging or significantly different compared to the younger 

comparison (MAYC vs LAYC) and including the 23 DEGs-AC were finally selected.  

Expression and functional role of the 23 AC-DEGs in 

aging tumor progression to aggressiveness 

 

To decipher the role of the 23 AC-DEGs in aging tumor 

progression, we analyzed the expression of the 23 AC-

DEGs in the normal thyroid and in early and late tumor 

stages as well as in the identified aggressiveness clusters 

(Fig. 4A, Supplementary Fig. 10A). All but two of these 

genes (FUT9 and PSG8) presented a significant 

upregulation in the MAAC samples compared to the 

LAAC (Supplementary Fig. 10A-B). Only five of the 23 

AC-DEGs showed a FC > |1| when MAYCs were 

compared with LAYCs, confirming that the expression of 

genes in this panel and their potential role appear to be 

more crucial to aggressiveness/progression in aging 

cohorts than younger cohorts (Supplementary Fig. 10C). 

Protein-protein network analysis identified two distinct 

clusters from the 23 DEGs with correlated interactions, 

confirming the distinction between the two subgroups of 

genes previously identified (Fig. 4B). The NCF2 

subgroup formed a denser network involving 27 miRNAs 

and 23 TFs, creating 98 regulatory loops. Next, pathway 

enrichment analyses were performed between MAAC and 

LAAC samples, and only entries with the 23 DEGs were 

retained (Fig. 4C, Supplementary Fig. 10D). As 

previously described, similar pathways observed in the 

young comparison were removed. We observed a strong 

enrichment of entries related to cell cycle and mitosis 

progression, including “mitotic cytokinesis” (p=1.49 x 10-

21), “mitotic chromosome condensation” (p=3.64 x 10-19), 

“mitotic sister chromatid segregation” (p=6.9 x 10-19), 

“chromosome segregation” (p=5.1 x 10-20) and “mitotic 

cell cycle” (p=6.4 x 10-21) etc. (Fig. 4C).  

 

Aging-related transcriptomic landscape in normal 

thyroid tissue 

 

To decipher the impact of aging on normal thyroid 

physiology, all 653 normal thyroid samples from the 

GTEx dataset tissue samples were analyzed and adjusted 

to gender and Hardy score. Since age in the GTEx dataset 

was categorized by decade and did not match the <55 and 

≥ 55 distinctions in the AJCC guidelines, we first 

compared gene expression between samples older and 

younger than 50 (445 vs. 208 samples). A total of 223 

DEGs (109 downregulated and 114 upregulated) were 

identified in the aging cohort (Fig. 5A). Interestingly, 

from PCA visualizing the sample variance explained by 

the DEGs, the first two PCs explained only 22.6% of the 

heterogeneity observed among the normal samples for 

both comparisons (Fig. 5A). The 223 DEGs were used as 

input for KEGG and gene ontology (GO) enrichment 

pathway analyses. (Fig. 5B-D, Supplementary Fig. 11A). 

Further selection was performed after logistic regression 

computing the pathways’ agglomerate z-score to identify 

the significant aging-associated pathways. The most 

enriched KEGG pathways were related to protein 

maturation, trafficking, and degradation, including 

“protein processing in endoplasmic reticulum” (OR=9.3, 

p=4.6 x10-8) and “endocytosis” (OR=1.8, p=1.3 x 10-2), 

“longevity regulating pathway” (OR=6.5, p=2.8 x 10-6), 

“antigen processing and presentation” (OR=4.2, p=7.6 x 

10-5), and “estrogen signaling pathway” (OR=5.8, p=4.6 

x 10-8). The enriched GO-BP (biological processes) were 

related to protein maturation with “protein refolding” 

(OR=4.2, p=5.35 x 10-5), “response to unfold protein” 

(OR=9.5, p=4.4 x 10-5), “regulation of protein 

ubiquitination” (OR=3.2, p=4.4 x 10-5) entries (Fig. 5B). 

This suggests a link between aging and unfolded protein 

response, protein maturation and stability. A similar 

analysis was performed with a different age comparison 

(≥ 60 vs. < 60) to decipher the transcriptomic landscape 

around age 55 (Fig. 5C, Supplementary Fig. 11B–D). A 

PPI network (based on Spearman correlation > |0.3| 

between nodes) was created between the DEGs and 

differentially expressed TFs including IRF8, HLF, SOX9, 

GRHL1, BCL6B, and PATZ1. Two interesting PPI 

subclusters could be highlighted, the chemokines (with 

CXCL1, CXCL2, and CXCL3) and the heat shock 

proteins (with HSPA1A, HSPA1B, HSPA6 and 

DNAJB1) (Fig. 5D).  

Immune infiltration in the microenvironment is a 

dynamic, and aging is a known modulator of this process 

[51, 52]. Analysis of microenvironmental heterogeneity in 

the GTEx data revealed that older tissues were associated 

with an increase in infiltration with M0 macrophages 

(p=5.0 x 10-3), CD8+ T-cells (p=1.2 x 10-5), and 

eosinophils (p=2.5 x 10-2), along with a decrease in M2 

macrophages (p=1.2 x10-7) and monocytes (p=5.0 x 10-3) 

(Fig. 5E). Taken together, these results strongly suggest 

that aging itself does not induce a deep transcriptomic 

change in the thyroid, as shown by the small number of 
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DEGs. Second, aging seems to primarily alter protein 

stability [53] and the endosome machinery [54], 

suggesting that endoplasmic reticulum stress occurs 

during the thyroid aging process, leading to the 

deregulation of several survival and proliferative 

pathways [55]. The aging thyroid gland seems to present 

a specific immune cell infiltration landscape that may 

protect against cancer given its enrichment with M0 

macrophages and CD8+ T-cells [56]. 

 
Figure 5. Ageing related transcriptomic landscape in thyroid normal tissue. (A) Volcano (left) and corresponding PCA plots 

of genes (right) after Differential Expressed Genes analyses in the aging normal cohort (≥50 vs <50, 445 old vs 208 samples – 

103 and 118 down and up-regulated genes). (B) Dot plots representing the adjusted p-value of KEGG pathways (left) and GO-

BP entries (right) differently enriched in the old (≥50) cohort. The 10 first most significant are described. (C) Volcano (left) and 

corresponding Principal Component Analysis (PCA) plots of genes (right) after Differential Expressed Genes (DEGs) analyses 

in the aging normal cohort (≥60 vs <60, 234 old vs 445 samples– 89 and 143 down and up-regulated genes.  (D) PPI and regulatory 
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network of the aging DEGs. Only edges with a spearman correlation > |0.3| were selected. (E) Bar plot representing CIBERSORT 

immune cell infiltration mean in the young and old normal samples. * adjusted p-value < 0.05. FC, fold change. 

Table 1. Table summarizing distribution of the clinical parameters across the 4 clusters identified. 
 
 LAYC MAYC LAAC MAAC 

Number of samples 189 132 103 57 

Percentage 39.3 27.4 21.4 11.9 
  Number of samples  Percentage of samples 
  LAYC MAYC LAAC MAAC Chi

2
 test p-value LAYC MAYC LAAC MAAC 

Lymph node 

metastasis 

N0 90 41 67 21 1.71E-07 41.1 18.7 30.6 9.6 

N1 77 80 26 33   35.6 37.0 12.0 15.3 

Tumor size 

< 1 cm 62 36 32 20 0.664 41.3 24.0 21.3 13.3 

≥ 1 cm 127 96 71 37  38.4 29.0 21.5 11.2 

< 2 cm 137 103 75 35 0.135 39.1 29.4 21.4 10.0 

≥ 2 cm 52 29 28 22   39.7 22.1 21.4 16.8 

Extrathyroidal 

extension 

Absent 151 80 66 25 1.29E-07 46.9 24.8 20.5 7.8 

Present 33 50 30 32  22.8 34.5 20.7 22.1 

No-Gross 184 128 90 47 1.31E-08 41.0 28.5 20.0 10.5 

Gross 0 2 6 10   0.0 11.1 33.3 55.6 

Distant metastasis 
M0 97 81 57 31 0.219 36.5 30.5 21.4 11.7 

M1 3 1 2 3  33.3 11.1 22.2 33.3 

Histological 

 type 

FPTC 62 4 30 4 1.99E-11 62.0 4.0 30.0 4.0 

C/TPTC 123 124 72 53   33.1 33.3 19.4 14.2 

C/FPTC 183 113 97 44 1.30E-07 41.9 25.9 22.2 10.1 

TPTC 2 15 5 13  5.7 42.9 14.3 37.1 

BRAF mutation 
WT 56 3 28 3 2.07E-14 62.2 3.3 31.1 3.3 

MUT 64 93 37 39   27.5 39.9 15.9 16.7 

TERT mutation 
WT 145 98 67 27 9.95E-14 43.0 29.1 19.9 8.0 

MUT 2 5 11 18  5.6 13.9 30.6 50.0 

Differentiation 

score 

Low 54 93 28 34 9.26E-18 25.8 44.5 13.4 16.3 

High 98 17 54 12   54.1 9.4 29.8 6.6 

Disease-free 

survival 

Non-recurrence 177 120 89 37 0.001 41.8 28.4 21.0 8.7 

Recurrence 11 13 8 12  25.0 29.5 18.2 27.3 

Overall survival  
Alive 188 133 97 47 1.39E-10 40.4 28.6 20.9 10.1 

Dead 0 0 6 10   0.0 0.0 37.5 62.5 

Progression-free 

interval 

Non-recurrence 177 120 91 43 7.88E-04 41.1 27.8 21.1 10.0 

Recurrence 11 13 11 14  22.4 26.5 22.4 28.6 

Disease-specific 

survival 

Alive 188 133 98 48 1.57E-04 40.3 28.5 21.0 10.3 

Dead 0 0 3 4   0.0 0.0 42.9 57.1 

                      

number of non-aggressive enrichments 11 4 4 0 

number of aggressive enrichments 0 7 5 12 

                      

Ratio (negative: non-aggressive parameter enrichment; positive: aggressive parameter 

enrichment) 
-0.92 0.25 0.08 1.00 

 

Aging-related aggressive thyroid hierarchy 

 

To better understand the degree to which aging modulates 

TC aggressiveness, we compared the identified 

(aggressiveness) clusters and ranked cluster-based 

enrichment with aggressiveness phenotypes. Table 1 

shows the distribution of clinical parameters in the four 

clusters. Pearson’s chi-squared test was used to estimate 

enrichment with non-aggressive (blue) and aggressive 

(red) clinical parameters. All parameters except tumor 

size and distant metastasis presented significantly 

different enrichment between the four clusters. After 

calculating a ratio of enrichment between the aggressive 

and non-aggressive parameters, we determined that 

MAAC was the most aggressive, followed by MAYC and 

LAAC, with LAYC being the least aggressive. Univariate 

and multivariate analyses confirmed this aggressive 

hierarchy. Finally, we observed that only MAAC 

significantly presented tumors with a higher risk of 

recurrence. Indeed, MAAC had a three- to six fold higher 

risk of a worse outcome than MAYC (DFS, HR=3.1, 

p=5.0 x 10-3; PFI, HR=2.6, p=5.0 x 10-3), LAYC (DFS, 

HR=5.7, p=4.9 x 10-4; PFI, HR=5.1, p=5.0 x 10-4), and 

LAAC (DFS, HR=3.8, p=1.4 x 10-2) (Fig. 6A–B, 

Supplementary Fig. 12). The most aggressive cluster, 

MAAC, was specifically enriched in samples with ETE 

(gross vs. non-gross, OR=6.0, p=4 x 10-2; present vs. 

absent, OR=2.5, p=1.3 x 10-2), presence of tall-cell variant 



 Ruiz E., et al.                                                                                   Aging drives thyroid cancer aggressiveness 

  

Aging and Disease • Volume 14, Number 3, June 2023                                                                              1006 

 

histological subtype (OR=4.7, p=1.0 x 10-3), and TERT 

promoter mutation (OR=7.9, p=3.0 x 10-5) (Table 1, Fig. 

6A, B). The genomic landscape difference between 

MAAC and LAAC was further investigated. The MAAC 

samples were significantly enriched in copy number gain 

in 26 loci on chromosome 1, with a frequency greater than 

20% (Supplementary Fig. 13A). A total of 41 genes 

holding a significant copy number gain were significantly 

upregulated in the MAAC compared to the LAAC 

samples, and three AC-DEGs (ASPM, CENPF, NCF2) 

had a copy number gain of 21%. Globally, genomic 

alterations were found across chromosomes, except for 

13p, 14p, 18p, and 22p loci. Loci in 1p/1q were found 

altered in all clusters except LAYC and were of 

significantly higher frequency in MAAC, suggesting that 

1p/1q loci are related to tumor aggressiveness as 

previously noted (Fig. 6B, Supplementary Fig. 13A–B). 

Pathway enrichment was estimated from the selected 

LAAC-specific DEGs, and two clusters of pathways were 

identified (Fig. 13B). The first subnetwork was enriched 

in entries related to cell death (“positive regulation of 

intrinsic apoptotic signaling pathway,” p=2.0 x 10-3; 

“Apoptosis - multiple species,” p=1.0 x 10-3) etc., and 

impoverished in entries related to immune response 

(“platelet activation,” p=1.9 x10-8; “T cell co-

stimulation,” p=1.0 x 10-2 etc.). The second subnetwork 

showed an enrichment of entries related to the metabolism 

and longevity (“positive regulation of glucose import,” 

p=3.4 x 10-11; “positive regulation of glycogen 

biosynthetic process,” p=3 x 10-3; and “longevity 

regulating pathway,” p=2.4 x 10-7 etc. Among the 2357 

DEGs, 218 genes were integrated in a high correlated 

interactome and 643 were tightly controlled by a 41 

miRNA/19 LncRNA/59 TF regulatory network 

(Supplementary Fig. 13C–E).  

 
Figure 6. The four thyroid cancer clusters aggressive hierarchy. (A)  Kaplan-Meier curves plotting survival probability 

according to DFS and OS for the four samples clusters (left), and each cluster compared to the 3 others (right) (log rank test 

p-value). (B)  Plots showing multivariate logistic regression analyses (adjusted to gender, race, lymph node metastasis, tumor 

size, extrathyroidal extension, and histological type) testing, from left to right, LAYC vs Other, MAYC vs Others, LAAC 
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vs Others, and MAAC vs Others. OS and DSS Cox regression analyses were not shown for LAYC and MAYC as not death 

event was present in these clusters. CPTC, Classical variant papillary thyroid carcinoma (PTC); DFS, Disease-free survival; 

Disease-specific survival; FPTC, Follicular variant PTC; MUT, Mutant; OS, Overall survival; TPTC, Tall-cell variant PTC; 

WT, Wild-type. p-value significant < 0.05. 

 
Figure 7. The global aging landscapes. (A-B) Heatmap representing the mean of significant pathway NES score (A) and immune 

cell infiltration (B) in normal tissue and each tumor stage. Arrows represent a significant FC (red, positive; blue, negative).  

Pathway enrichment across the six thyroid clusters 

 

In previous sections, we evaluated the signaling pathway 

hallmarks and the immune cell infiltration landscape in 

normal and cancerous thyroids in young and old cohorts 

independently (Fig. 1C–F). Because each comparison was 

performed independently, we were not able to run 

pathway enrichment analyses in all samples, thus 

hindering our understanding of the molecular processes 

involved in the transition from normal thyroid to tumor 

induction and tumor progression in both young and old 

patients. To respond to this limit, enrichment analysis of 

all pathways selected in the different comparisons and all 

samples were run and statistical analyses were performed. 

Fig. 7A and Supplementary Fig. 14 show the pathway 

entries presenting a concordance between the two score 

analyses. We observe a significant upregulation and 

positive enrichment of cell cycle pathways (or related 

processes) in the transition from normal tissue to late 

tumor stage in patients ≥ 55; however, upregulation and 

increased positive enrichment in these processes could 

only be seen when early-stage tumors progress to late-

stage in samples aged < 55. Mitotic cell cycle and 

chromosome segregation were only significantly 
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upregulated and positively enriched in early to late tumors 

in ≥ 55-year-olds but not in < 55-year-old patients. 

Interestingly, we observed that immune response-related 

processes such as B and T cell receptor signaling, helper 

T cell differentiation, adaptive immune response, and 

regulation of inflammatory response pathways were 

downregulated and negatively enriched when normal 

tissues transitioned to early tumors in both age categories. 

The cell cycle and mitosis progression entries were also 

confirmed as hallmarks of aging late tumors, associated 

with ERK1/2 cascade and EGFR signaling was 

upregulated in the young late tumors and downregulated 

in the aging late tumors (Fig. 7A). This strongly suggests 

that key processes involved in immune surveillance for 

tumors are not active or activated in early thyroid 

tumorigenesis. We also observed a downregulation in 

infiltration with CD8+ T cells and activated natural killer 

and follicular helper T cells in the thyroid of aged patients 

in the transition from normal to early tumors (Fig. 7B). 

Interestingly, the induction of the unfolded protein 

response was characteristic of the aging normal samples. 

Indeed, the entry was overexpressed in the aging normal 

samples and decreased during tumor progression. 

 

DISCUSSION 

 

In this study, we leveraged the availability of multi-omics 

datasets and robust statistical methods to uncover 

molecular markers of age-related discrepancies in the 

clinical presentation of TC. Our study highlights how the 

confluence of the hallmarks of aging and TC may drive 

the acquisition of phenotypes and the transition from 

indolent to more aggressive TC and consequently poorer 

survival outcomes. With aging, we observed a significant 

shift towards metastasis, ETE, large tumor size, TERT 

mutation, increased mortality, and other indicators of poor 

prognosis, most evident at age ≥ 55. This suggests that 55 

is the age at which the interplay of malignancy drivers and 

cancer phenotypes is at a steady state but leans towards 

more aggressiveness. Furthermore, we identified a higher 

rate of single nucleotide polymorphisms in tumors from 

aging patients compared to younger patients. Defects in 

DNA replication and repair, spontaneous deamination of 

methyl-cytosine to thymine, and longer life history of 

exposure to cell-intrinsic and external mutagens could 

explain this observation [57]. While we observe that 

CNVs are present on multiple chromosomes with gains or 

losses, aging-dependent aggressiveness was only strongly 

associated with changes in chromosome 1p/q. Our study, 

like Chatsirisupachai et al. [58], did show a significant 

positive association between aging and the occurrence of 

somatic copy number alteration in TCs. This includes 

gains on chromosome arms 1p, 5p and losses on arms 9q 

and 13q identified in that study and ours. Even more, our 

study identified specific gains on the 4p, 6p, 14q, 19p/q, 

and 20p/q loci and specific loss on the 2p/q, 8p/q, 10p/q, 

11p/q, 16q, 17p, 19p, and 21p/q loci that could play a role 

in aging-dependent tumorigenesis.  Previous studies have 

linked gains/losses on chromosome 1p/q and 22 to more 

aggressive PTC, but aging was not identified as a 

mediator of this observation perhaps due to a utilization 

of age 45 as a cut-off aggressiveness analysis in that study 

[59]. Important losses in chromosomal arms with tumor 

suppressor genes such as PTEN, CDKN2A, and TP53 

were identified in the aging cohort, potentially explaining 

the increase in incidence of this cancer type in aging 

individuals. Increasing evidence suggests that a higher 

burden of copy number alterations is prognostic of 

reoccurrence and mortality and can partially explain 

higher death rates in older patients [60]. Copy Number 

changes were linked to the expression of aging-specific 

and aggressiveness-associated genes such as the 

transcription factor ZNF695; the serine-threonine kinase 

NEK2; cell-division regulators such as CENPF, EXO1, 

and ASPM; and extracellular matrix proteins such as 

MMP19. CENPF is already known as thyroid carcinoma 

biomarker, involved in migration and proliferation[61]. 

Interestingly, anaplastic TC, the most aggressive 

histological TC is enriched in genes involved in the 

mitosis progression including CENPF, NEK2 and 

NUSAP1 [62, 63]. We also identified several aging-

dependent TFs that are upregulated in TCs, such as 

FOXM1 and SOX11, both of which have fundamental 

roles in tumorigenesis and aggressiveness. FOXM1 is a 

spatiotemporally expressed master TF activated by 

aberrant KRAS signaling to drive cancer initiation, self-

renewal, and proliferation. Elevated expression of this TF 

is associated with poor prognosis in solid tumors, and its 

silencing has been demonstrated to decrease the 

invasiveness of TC cells [64, 65]. SOX11 is also a key 

regulator of organogenesis and embryogenesis, with 

elevated expression in mesenchymal and neural 

progenitor cells. Elevated expression of this TF has been 

observed in an array of solid tumors [66], and its miR-

211-5p-mediated downregulation is associated with 

decreased proliferation and migration in TC cells.  

Our analysis also reveals an aging-dependent 

remodeling of the TME at both onset and late stages. In 

aging samples, we confirm a previously reported decrease 

in infiltration with immune surveillant CD8+ T cells [67] 

and show that significantly decreased activation of anti-

neoplastic immune response pathways may drive age-

related transition to aggressiveness. Questions remain 

regarding the prognostic utility of immune cell infiltration 

in most cancer types, but we provide evidence that 

immune interactions are important to thyroid tumor 

trajectory and the treatment response [67, 68]. 

Interestingly, we did not observe a significant association 
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between increase in BRAF mutation (a prognosis marker) 

and aging. Evidence in the literature on this differs 

between studies; some report an increase in BRAFV600E 

with age [69, 70] and others [71, 72] show no association. 

This confusion suggests the need for more precise 

prognostic markers that factor in aging to improve 

prognosis. A rigorous approach was used in this study to 

identify prognostic panels of aging-specific and aging-

dependent aggressiveness marker genes in adult and 

young cohorts, respectively. We also show that scores 

based on these genes demonstrated better performance 

than both AJCC staging and ATA risk stratification 

criteria in predicting aggressiveness and determining 

reoccurrence risk. Internal and external validations were 

further performed to test the accuracy of the 23-AC-DEGs 

panel for TC prognostication (Supplementary Fig. 15-20). 

Furthermore, high-level classification of patients into 

low and high aggressiveness clusters can be accomplished 

using these panels. Thus, our results have the potential to 

significantly improve prognosis and outcome prediction 

in clinical use.  

Unlike previous studies [3, 4, 58] which have adopted 

a broad analysis approach to understanding the influence 

of aging on cancer, our study focuses on TC, for which 

aging is a prognostically relevant criterion. We 

comprehensively highlight the molecular pathways and 

signatures behind the influence of aging on the 

development of aggressiveness-related phenotypes. A 

global, pan-cancer evaluation of the molecular drivers of 

cancer, while useful, often misses cancer-type-specific 

features due to methodological issues, differences in 

platforms for data generation, non-uniformity in the 

histopathological characterization, incomparability of 

tumor grades, and measurement of clinical outcomes such 

as treatment response and survival [73]. 

Overall, we show that aging compounds the effects of 

genomic instability, transcriptional alterations, cellular 

interactions with tumors, and important signaling 

pathways in TC, thereby accelerating metastasis and 

aggressiveness. Our results do not suggest that aging 

alone can drive TC onset and aggressiveness; rather, 

clinical presentation and outcomes of cancers are often 

dependent on a wide array of tumor-host factors ranging 

from demographic characteristics to factors such as the 

cancer origin/cell type, genetic history, mutation 

profile/burden etc. However, our findings have wide-

reaching implications for improving how aging as a 

continuous biological process is viewed as a powerful 

modifier in cancer studies. It also creates opportunities for 

more personalized clinical care based on a more thorough 

knowledge of the tumor cellular landscape. 
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