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ABSTRACT: Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years 

of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic 

plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the 

exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of 

evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic 

terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. 

Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning 

and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses 

the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning 

of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor 

signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible 

convergence point for Aβ and tau toxicity. 
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Alzheimer's disease (AD) affects one in every nine 

adults age 65 and older and is the sixth leading cause of 

death in the United States [1]. By 2025, the number of 

individuals 65 years of age and older with AD is 

expected to reach 7.1 million, and this number is 

projected to reach 13.8 million people by 2050 [1]. AD 

is characterized by progressive memory loss, decline in 

cognitive skills, and adverse behavioral changes [2]. 

Biologically, AD is characterized by an abundance of 

extracellular amyloid plaques comprised of insoluble 

beta-amyloid (Aβ), and intracellular neurofibrillary 

tangles containing hyperphosphorylated tau protein [3]. 

The third major feature of AD is an alteration of 
neuronal connections, eventually leading to massive 

neuron loss throughout the brain.  

The best correlate of memory deficits in AD 

patients, however, is not Aβ plaque burden or 

neurofibrillary tangles, but synapse loss [4]. Similarly, 

synaptic dysfunction is observed prior to neuron loss in 

mouse models of AD and coincides with the onset of 

memory deficits [5, 6]. Emerging evidence suggests 

early cognitive decline in AD may result from a 

dysregulation of excitatory glutamatergic 

neurotransmission by soluble Aβ, leading to synaptic 

alterations and tau phosphorylation [e.g., 7]. 

Glutamate, the major excitatory neurotransmitter, is 

responsible for many of the brain’s functions including 

cognition and memory [8, 9]. Glutamate is believed to 
contribute to hippocampal-dependent learning and 

memory through long-term potentiation (LTP) [10], a 
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long-lasting strengthening in signal transmission 

between two neurons that results from their synchronous 

stimulation [11, 12]. Although beneficial at low levels, 

high concentrations of extracellular glutamate can lead to 

cell death through excessive activation of glutamate 

receptors, a process referred to as excitotoxicity [13]. 

Even at normal concentrations of glutamate, 

excitotoxicity can ensue if abnormalities in the glutamate 

receptors occur, such as tau-induced alterations in the 

phosphorylation of N-methyl-D-aspartate receptors 

(NMDARs) [14]. 

Excitotoxicity is linked to several 

neurodegenerative disorders, including AD [15], and 

occurs when uncontrolled glutamate release surpasses 

the capacity of astrocytic clearance mechanisms, leading 

to an overabundance of extracellular glutamate and 

excessive activation of extrasynaptic N-methyl-D-

aspartate receptors (E-NMDARs) [16]. Because 

glutamatergic neurotransmission occurs mainly within 

the confines of the tripartite synapse, focus will be given 

to the ways in which these components of the synapse 

become deregulated during AD, with particular emphasis 

on consequences for E-NMDAR activation.  

 

 

 

 
 

Figure 1. The tripartite glutamate synapse. In the presynaptic neuron, glutamine (Gln) is converted to glutamate (Glu) by 

glutaminase and packaged into synaptic vesicles by the vesicular glutamate transporter (VGLUT). SNARE complex proteins mediate 

the fusion of vesicles with the presynaptic membrane. Astrocytes also release glutamate via the cystine-glutamate antiporter (Xc
-). 

Following release into the extracellular space, glutamate binds to presynaptic (mGluR2/3 and mGluR4/8), synaptic (S-NMDAR and 

AMPAR) and peri-/extra- synaptic (mGluR1/5 and E-NMDAR) glutamate receptors. Glutamate is cleared from the synaptic space 

through excitatory amino acid transporters (EAATs) on neighboring astrocytes (GLAST and GLT-1) and, to a lesser extent, on 

neurons (EAAT3). Glutamate is converted to glutamine by glutamine synthetase within the astrocyte before being transported to 

presynaptic neurons, thereby completing the glutamate-glutamine cycle.  
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Table 1. Primary locations and functions of metabotropic glutamate receptors in the tripartite synapse.  

mGluR 

Group 
Subtype 

Glutamate 

Receptor Affinity 

(EC50) [178] 

Location* Function* 

Group I 

mGluR1 9 
 

Postsynaptic [179] 

Enhances excitability, synaptic plasticity, 

LTP/LTD [180, 181] 

mGluR5 10 
 

Astrocytes [182] 
Elevates intracellular calcium [183, 184] 

 

Group II 

mGluR2 4 

 

Presynaptic 

 

Inhibition of presynaptic glutamate [185]; 

LTD [186] 

 

mGluR3 3 Astrocytes [187] 
Inhibition of cystine/glutamate antiporter [26] 

 

Group III 

mGluR4 5 

 

Presynaptic [188] 

 

Inhibition of presynaptic glutamate [189] 

 

 

 

Increases glutamate uptake [187] 

 

mGluR7 1000 
 

Astrocytes [190] 

mGluR8 
2.5 [191] 

 

 

* Though these receptors are located elsewhere and have additional functions, this table describes the most described, and believed to be primary, 

locations and functions of these receptors as they relate to the tripartite synapse.   

The Tripartite Glutamate Synapse 

 

The term “tripartite synapse,” proposed twenty years ago 

to describe communication between neurons and 

astrocytes [17], encompasses a presynaptic terminal, a 

postsynaptic spine, and an astrocytic process (Figure 1). 

Within the tripartite synapse are multiple sites that 

regulate extracellular glutamate levels and are sensitive 

to AD-related pathology. Below, the normal 

physiological processes regulating extracellular 

glutamate are briefly described, followed by descriptions 

of how these targets are deregulated in AD.  

Glutamate can be synthesized de novo from glucose 

through the Krebs/tricarboxylic acid cycle [18] or 

through recycling of glutamate by the astrocyte-

neuronal, glutamate-glutamine cycle. In the glutamate-

glutamine cycle, glutamate is synaptically released and 

taken up by surrounding astrocytes, where it is converted 

to glutamine, a non-neuroexcitatory amino acid, and 

transferred back to neurons for conversion to glutamate 

[19]. Glutamate is then packaged presynaptically into 

synaptic vesicles by vesicular glutamate transporters 

(VGLUTs). Though VGLUTs were once thought to be 

found in astrocytes, more recent evidence suggests that 

VGLUTs are not expressed in astrocytes, at least in the 

mouse brain [20]. Following presynaptic neuronal 

depolarization, calcium channels open, permitting the 

influx of calcium and triggering the fusion of vesicles 

with the membrane, resulting in the exocytosis of 

glutamate into the synapse [21, 22]. However, glutamate 

release is not limited to presynaptic neurons. Astrocytes 

also exhibit calcium-dependent glutamate release [23, 

24] and release glutamate via the cystine-glutamate 

antiporter (Xc-) [25], a sodium-independent anionic 

amino acid transporter that exchanges a molecule of 

glutamate into the extrasynaptic space in exchange for a 

molecule of cystine transported into astrocytes [25, 26].  

Once in the extracellular space, glutamate can bind 

to ionotropic (iGluR) or metabotropic (mGluR1-8) 

receptors [27, 28]. The iGLuRs include N-methyl-D-

aspartate (NMDA), α-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA), and 2-

carboxy-3-carboxymethyl-4-isopropenylpyrrolidine 

(KA) [29]. iGLuRs are ligand-gated ion channels that 

mediate the majority of excitatory neurotransmission and 

synaptic plasticity [27, 30, 31]. Within each class, 

receptors have distinct functional properties that arise 

from the homo-oligomeric, or hetero-oligomeric, 

assembly of distinct subunits into cation-selective 

tetramers [32-36].  
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Both AMPA and KA receptors are involved in fast 

synaptic transmission; glutamate binding to these 

receptors results in a conformational change and sodium 

influx [37, 38]. In contrast, NMDA receptors do not 

participate in fast synaptic transmission. At resting 

potential, the NMDA receptor channel is blocked, in a 

voltage-dependent manner, by magnesium. Removal of 

magnesium requires depolarization of the postsynaptic 

neuron, which typically occurs after glutamate binds 

AMPA or KA receptors, leading to an influx of sodium 

[39-41]. In addition, NMDA receptors require the 

binding of glutamate, as well as a co-agonist, glycine or 

D-serine, to open the ion channel [42-44]. If both ligands 

(glutamate and a co-agonist) bind while the postsynaptic 

neuron is in a depolarized state, NMDA channels will 

open, permitting calcium to enter the cell [45]. Because 

NMDA receptors require concomitant presynaptic 

(release of glutamate) and postsynaptic (depolarization) 

activities, NMDA receptors detect the coincidence of 

two events and are sometimes referred to as coincidence 

detectors. In addition, NMDA receptors have a higher 

permeability to calcium than AMPA or KA receptors 

[46, 47]. The increased influx of calcium triggers 

secondary messenger systems leading to the 

establishment of LTP, a process believed to underlie 

learning and memory [10]. Overactivation of NMDA 

receptors, however, leads to an excess of intracellular 

calcium, which initiates a series of events leading to cell 

death [48-50], a process described in detail in the next 

section. 

The mGLuRs are G-protein coupled receptors with 

a seven putative trans-membrane spanning domain [51]. 

This large domain selectively binds glutamate and 

activates second messenger systems [52-55], resulting in 

a modulatory role in the central nervous system (CNS) 

function of neuronal excitability and neurotransmitter 

release. Unlike fast synaptic transmission of ionotropic 

receptors, mGLuRs are involved in slow synaptic 

transmission and are subdivided into 3 groups, Groups I, 

II, and III, on the basis of signal transduction pathways 

and pharmacological profiles [53] (see Table 1). Group I 

mGluRs are positively coupled to phospholipase C [56], 

whereas Groups II and III mGluRs are negatively 

coupled to adenylyl cyclase [57-60]. All three groups of 

mGLuRs, with the exception of mGluR 6, play a role in 

regulating hippocampal function.  

Regulation of extracellular concentrations of 

glutamate is essential. Over-stimulation can erode 

synaptic regulation, leading to alterations in learning and 

memory, and more concerning, neurodegeneration 

throughout vulnerable networks [61]. Because there are 
no extracellular enzymes to degrade glutamate, the only 

way to terminate glutamate signaling, and to keep 

extracellular glutamate levels low, is through uptake of 

glutamate by one of five sodium-dependent excitatory 

amino acid transporters (EAATs) [62]. Only EAAT1 and 

EAAT2, also referred to as GLAST and GLT-1, 

respectively, are expressed in rodent brains [62]. GLAST 

and GLT-1 are primarily responsible for glutamate 

uptake and are located on astrocytes [63, 64]. EAAT3 is 

present on postsynaptic neurons in the in the CA1 region 

of the hippocampus and the granular layer of the dentate 

gyrus, and its uptake of glutamate is sodium dependent 

[65]. Whereas GLAST and GLT-1 are found only in the 

brain, EAAT3 can also be found in the intestines, 

kidney, liver, and heart [66]. CNS expression of EAAT3 

is relatively low compared to that of GLT and GLAST 

[67]. EAAT4 is expressed primarily in the cerebellar 

Purkinje cells, while EAAT5 is found in retinal neurons 

and is involved in visual processing [68].  

When uncontrolled glutamate release surpasses the 

capacity of astrocyte clearance mechanisms, or when the 

function or expression of EAATs is decreased, excessive 

activation of glutamate receptors can occur, a process 

referred to as excitotoxicity. Of particular relevance to 

the process of excitotoxicity are NMDA receptors.  

 

Synaptic vs. Extrasynaptic NMDARs 

 

NMDARs are essential mediators of synaptic plasticity 

and transmission [10]. There are seven NMDA receptor 

subunits (NR1, NR2A-D, and NR3A-B) forming 

heteromeric complexes containing NR1 subunits and a 

combination of NR2 and/or NR3 subunits. NR1 and NR3 

bind to glycine [69], whereas NR2 binds to glutamate 

[70]. Because NR3A is restricted to expression during 

development [71] and NR3B is restricted to brain 

regions not involved in early stages of AD (i.e., the 

somatic motor neurons of the brainstem and spinal cord 

[72]), focus will be given to NR1/NR2 complexes. 

Likewise, NR1/NR2 complexes play an important role in 

learning and memory [73], as well as in excitotoxicity 

[74], and are abundantly located in the hippocampus, one 

of the first regions affected in AD [75-77]. 

NMDA receptors can be found synaptically, 

perisynaptically, or extrasynaptically [78]. Synaptic 

NMDA receptors (S-NMDARs) are activated by 

presynaptic glutamate release [79], whereas perisynaptic 

NMDA receptors are located 200-300 nm from the 

postsynaptic density [80] and are activated only by high 

glutamate concentrations [78]. Extrasynaptic NMDA 

receptors (E-NMDARs) are located on the spine neck, 

dendritic shaft, or soma [81] and also require high 

glutamate concentrations [78]. In addition, many E-
NMDARs are adjacent to glia [82] Thus, it is possible 
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that astrocytic release of glutamate may result in 

activation of E-NMDARs.  

Activation of S-NMDARs, which predominantly 

contain the NR2A subunit, mediates neuronal survival 

and resistance to trauma via their anti-apoptotic and 

antioxidant effects [16, 83]. In contrast, activation of E-

NMDARs (predominately containing the NR2B subunit) 

is associated with neurotoxicity by stimulating cell death 

pathways [16, 83]. S-NMDAR receptors primarily use 

D-serine, released by neighboring astrocytes, as their co-

agonist [84], whereas E-NMDARs are believed to use 

glycine as their co-agonist [85]. The relative difference 

in co-agonist use by S-NMDARs and E-NMDARs might 

be explained by the differential localization of NR2A 

and NR2B subunits, respectively, as NR2B-containing 

receptors have a tenfold higher affinity for glycine than 

NR2A-containing receptors [70, 86]. Similarly, the 

localized release and astrocytic uptake of these co-

agonists has also been hypothesized to explain the 

differences in co-agonist use by S-NMDARs vs. E-

NMDARs (see [87, 88] for review). Further work is 

needed in this area, as a better understanding of the role 

of NMDAR co-agonists may have therapeutic 

implications.  

The pathways triggered by E-NMDARs are not 

directly related to calcium overload; even after triggering 

equivalent calcium concentrations, the downstream 

events for synaptic and extrasynaptic receptors differ 

([16] and see [15] for review) and are often in direct 

opposition to one another. One particularly relevant 

example for AD includes the differential effects on 

CREB (cyclic cAMP response element binding protein), 

a transcription factor essential for the conversion of short 

to long-term memory [89-91]. S-NMDARs activate 

CREB [16], whereas E-NMDARs inactivate CREB, and 

this inactivation dominates over the effects of S-

NMDAR activation [16, 92].  

Alterations in CREB activity are not only important 

for learning and memory but also for neuroprotection. 

Increases in CREB signaling following activation of S-

NMDARs result in increased expression of brain-derived 

neurotrophic factor (BDNF) [16], essential for neuronal 

survival [93]. S-NMDAR activation also suppresses 

apoptotic signaling and increases antioxidant defenses. 

For example, activation of S-NMDARs suppresses 

forkhead box O (FOXO), a transcription factor involved 

in the regulation of oxidative stress and the modulation 

of genes involved in apoptosis [94].  

Many of the signaling pathways activated by E-

NMDARs are in direct antagonism to those activated by 

S-NMDARs. As with CREB activity [16], the 
extracellular signal-regulated kinase (ERK1/2) pathway 

is bidirectionally modulated by S-NMDARs and E-

NMDARs, with E-NMDARs exerting a dominant ERK 

shutoff pathway [95]. Because ERK is crucial in memory 

consolidation and synaptic plasticity [96], shutoff of this 

pathway represents another way in which E-NMDAR 

activation is detrimental to learning and memory. 

Similarly, the suppression of FOXO activity by S-

NMDAR signaling is opposite to that observed following 

E-NMDAR activation; E-NMDAR activation increases 

FOXO activation, leading to excitotoxic cell death [97].   

In addition to the direct antagonism of S-NMDAR 

pathways, activation of E-NMDARs also affects 

pathways not involved in S-NMDAR signaling. For 

example, S-NMDAR activation does not affect calpain 

activity, whereas E-NMDAR stimulation invokes 

calpain-mediated cleavage of striatal enriched tyrosine 

phosphatase (STEP) into an inactive form [98]. This 

inactive form of STEP is unable to dephosphorylate its 

substrates, including the stress-activated protein kinase, 

p38, and the Src kinase family member, Fyn, leading to 

an overactivation of these substrates following STEP 

cleavage. Activation of p38 is closely linked with cell 

death [99]; however, the consequences of increased Fyn 

activity are less clear and only recently recognized. One 

consequence of increased Fyn activity is an increase in 

the surface expression of NR2B [98]. Fyn 

phosphorylates the Tyr1472 residue of the NR2B 

subunit, leading to exocytosis of NMDAR complexes to 

neuronal surfaces [100]. When E-NMDAR stimulation 

inactivates STEP, STEP can no longer deactivate Fyn, 

leading to increased Fyn activity and exocytosis of 

NR2B receptors [101]. In addition, STEP 

dephosphorylates the Tyr1472 residue, promoting 

internationalization [102]. Thus, inactivating STEP leads 

to decreased endocytosis and increased exocytosis of 

NR2B receptors [101]. This increase in NR2B-

containing receptors may then lead to an increase in E-

NMDAR signaling, thereby creating a self-perpetuating, 

feed-forward loop of excitotoxicity.  

Increased activation of E-NMDARs may also 

mediate tau pathology in AD. Increased activation of 

NR2B-containing receptors induces tau phosphorylation, 

while blockade of NR2B receptors prevents this 

phosphorylation [103]. Likewise, blockade of 

extrasynaptic NR2B receptors abolishes tau-mediated 

cytotoxicity in a cell culture system [104]. Memantine, 

used to treat AD, preferentially blocks E-NMDARs at 

low doses, while sparing normal synaptic activity [105]. 

Memantine treatment reduces tau phosphorylation [106] 

and excitotoxicity [107] while increasing memory 

functioning [108]. The following sections will provide 

evidence that glutamate can accumulate extracellularly 
to reach pathological levels as the tripartite synapse 

becomes deregulated in AD. 
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Figure 2. Aβ-mediated increases in extracellular glutamate and the resulting excitotoxicity. (1) Aβ increases presynaptic 

release of glutamate. (2) Aβ elevates astrocytic calcium via stimulation of astrocytic α7 nicotinic receptors, resulting in astrocytic 

glutamate release via an unknown mechanism. (3) Aβ decreases glutamate clearance from the synapse, thereby prolonging the 

duration of glutamate in the synapse and potentially resulting in the spread of glutamate to neighboring synapses. (4) Prolonged 

activation of S-NMDARs and AMPARs resulting from increased extracellular glutamate is predicted to cause desensitization and 

internalization of NMDA/AMPA, resulting in synaptic depression. (5) Glutamate spillover activates E-NMDARs, resulting in 

multiple deleterious downstream events, including an increase in tau kinase activity, cell death, and blockade of long-term 

potentiation (LTP) and CREB phosphorylation (pCREB).  

 

 

Aβ and Excitotoxicity  

 

Beta-amyloid (Aβ) has long been implicated in the 

pathogenesis of AD [109-113]. According to the original 

amyloid cascade hypothesis [114], the mismetabolism of 

the amyloid precursor protein (APP) results in increased 

amyloid plaque deposition (the insoluble deposits of 

extracellular Aβ) and a pathological cascade leading to 

neurofibrillary tangle formation and neuronal death. 

However, more recent studies have resulted in a 

reformulation of the amyloid cascade hypothesis with a 

shifted focus from amyloid plaques to increases in 

soluble oligomeric Aβ as the more likely initiating event 

in AD [115-120]. Aβ plaques and, in particular, soluble 

oligomers, have been tied to disruptions in glutamate 

synaptic transmission [5, 6, 121-124] and can result in 

excitotoxicity through several different routes, including 

stimulation of glutamate release, inhibition of glutamate 

uptake, and alteration of signaling pathways related to 

activation of glutamatergic receptors (Figure 2).  



 C. C. Rudy et al                                                                                         Glutamatergic Synapse and Alzheimer’s Disease 

Aging and Disease • Volume 6, Number 2, April 2015                                                                                 137 
 

Aβ can increase glutamate release from neurons 

[125, 126] and astrocytes [127-129], resulting in 

abnormally high extracellular levels capable of 

activating the pathological E-NMDARs. Aβ25-35 (1 – 

100 uM), a particularly toxic Aβ fragment, increases 

potassium-induced release of both aspartate and 

glutamate in cultured hippocampal neurons, an effect 

dependent on calcium; interestingly, basal release of 

glutamate and potassium-induced glutamate release is 

exacerbated in slices from aged rats exposed to Aβ25-35 

compared to slices from young rats, suggesting one way 

in which aging might increase the risk for AD [125]. 

Soluble Aβ oligomers also promote extracellular 

accumulation of glutamate by increasing the release of 

presynaptic vesicles, resulting in increased postsynaptic 

activity [126]. This Aβ oligomer-induced release of 

glutamate is blocked by a sodium channel blocker 

(tetrodotoxin), an NMDAR antagonist (MK-801), or the 

removal of calcium from the extracellular medium, 

suggesting a dependence on excitatory neuronal activity 

[126]. 

Aβ has primarily been shown to stimulate glutamate 

release through its action on glia [127-129]. Picomolar 

concentrations of Aβ1-42 elevate astrocytic calcium via 

stimulation of astrocytic α7 nicotinic receptors, resulting 

in astrocytic glutamate release in rat hippocampal slices 

[127, 128]. As with the neuronal release of glutamate 

[130], the activation of E-NMDARs is a primary route 

by which downstream toxicity occurs; Aβ-induced 

astrocytic glutamate release increases E-NMDAR 

currents and decreases S-NMDAR currents, leading to 

synapse loss [128].  

Another way in which Aβ can increase extracellular 

concentrations of glutamate is by inhibition of astrocytic 

uptake, resulting in an increased duration of glutamate in 

the synaptic cleft [131-135]. In cultured astrocytes, 

surface expression of GLT-1, but not GLAST, is reduced 

following incubation with Aβ1-42 (500 nM) [133]. In 

the hippocampus of mice, however, the expression of 

both GLT-1 and GLAST is reduced following injection 

of Aβ1-40 (400 pmol/site) [135]. Similarly, GLT-1 and 

GLAST uptake activity is inhibited following the 

administration of either Aβ1-40 (5 µM) or Aβ1-42 (5 

µM) to cultured astrocytes [132]; this decrease in 

transporter activity is due to a decrease in transporter 

expression resulting from Aβ-mediated 

phosphorylation/activation of astrocytic mitogen-

activated protein (MAP) kinases, including ERK and 

JNK [132]. Altered activity of MAP kinase cascades 

results from the oxidative stress conditions induced by 

Aβ [132], and anti-oxidant pretreatment can prevent the 
Aβ-mediated decrease in astrocytic uptake of glutamate 

[133]. The ability of Aβ to almost double the amount of 

time required to clear synaptically released glutamate 

suggests Aβ may promote the spread of glutamate from 

one synaptic domain to the next [133]. Such a spread 

could potentially alter the activity of entire neuronal 

networks. 

Inhibition of glutamate reuptake is not limited to 

astrocytes; in cultured microglia, Aβ25-35 (5 uM) 

treatment also increases extracellular glutamate 

concentration via the reverse glutamate transporter [129]. 

Recent work suggests the Aβ-mediated changes in 

glutamate uptake may further increase Aβ levels and 

cognitive impairment; mice lacking one allele for GLT-1 

crossed with transgenic mice expressing mutations of 

APP and presenilin-1 (AβPPswe/PS1ΔE9) exhibited 

earlier memory deficits and an increase in Aβ42/Aβ40 

compared to AβPPswe/PS1ΔE9 mice [136]. Alterations 

in GLT-1 have also been observed in mild cognitive 

impairment (MCI) and AD patients, with the severity of 

detergent-insoluble GLT-1 associated with disease 

progression [137]. 

Astrocytes not only maintain healthy glutamate 

levels, but also have the capacity to clear and degrade Aβ 

[138, 139]. Astrocytes express Aβ-degrading proteases, 

including neprilysin and insulin-degrading enzyme 

[140]. There is an age-related downregulation of these 

Aβ-degrading proteases [141], suggesting one way in 

which Aβ levels may increase with age. Of particular 

interest to the current review is recent work showing that 

MK-801 and ketamine, both non-competitive NMDAR 

antagonists, decrease the expression of neprilysin, but 

not insulin-degrading enzyme, resulting in decreased Aβ 

degradation [140]. Though the decreased neprilysin 

expression is associated with a reduction in p38 MAPK 

phosphorylation [140], the exact mechanism by which 

NMDAR antagonism decreases Aβ degradation is not 

known and warrants further investigation.  

One consequence of increased Aβ release is an 

increase in glutamate spillover and activation of E-

NMDARs [128, 130]. Accumulating evidence for the 

link among Aβ, glutamate excitotoxicity, and E-

NMDARs has stemmed in part from the ability of 

various NMDAR antagonists to prevent or reverse Aβ-

related damage to neuronal and glial cultures. Although 

many early studies investigating the role of Aβ in 

excitotoxicity used high concentrations of synthetic Aβ 

(upwards of 20 μM and higher than that found in healthy 

brains), recent work suggests the application of much 

lower Aβ concentrations also results in dramatic synapse 

loss, reactive oxygen species production, and cell death 

(e.g., [123, 142]).  Even picomolar concentrations of Aβ 

incubated with organotypic hippocampal cultures results 
in perturbed NMDAR-dependent signaling and 

progressive loss of synapses and spines, whereas 
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blockade of NMDARs prevents the loss of hippocampal 

synapses [123]. A slightly higher concentration of 

oligomeric Aβ1-42 (1 µM) in cultured cortical neurons 

leads to activation of NADPH oxidase and a subsequent 

increase in reactive oxygen species production [142]. 

The reactive oxygen species trigger ERK1/2 activation 

and arachidonic acid release, effects reversed by a 

selective NMDAR antagonist, D-APV (10 µM), as well 

as memantine (5 µl) [142]. Aβ-induced activation of E-

NMDARs also results in toxic levels of nitrous oxide and 

abnormally high levels of caspase-3 activity that 

contribute to synaptic spine loss as a result of excessive 

calcium influx [128]. 

 

 

 

 
 
Figure 3. Tau-mediated excitotoxicity. (A) In healthy neurons, tau transports Fyn to the dendritic spine where Fyn, a tyrosine 

kinase that phosphorylates the NR2B receptor subunit Tyr1472, stabilizes the NR2B:PSD95 complex. (B) In the presence of Aβ 

and/or hyperphosphorylated tau (ptau), stabilization of the NR2B:PSD95 complex enhances glutamatergic excitotoxicity. (C) 

Removal of tau or Fyn prevents glutamatergic excitotoxicity mediated by Aβ. 

 

 

 

 

Aβ oligomers can shift the activation of NMDAR-

dependent signaling pathways toward those involved in 

the impairment of LTP and the induction of long-term 

depression (LTD), effects observed in both neuronal 

cultures and in vivo [121-124, 143-147]. The mechanism 

by which Aβ impairs LTP has yet to be completely 

elucidated, but it may involve the extreme permeability 

of the membrane to calcium and subsequent reactive 

oxygen species production [144], effects potentially 

mediated by E-NMDARs and mGluR5 activation. 

Application of Aβ1-42 (1 - 100 nM) to cultured 

hippocampal slices results in blockade of LTP, an effect 

prevented by inhibition of E-NMDARs with memantine 

[143] or inhibitors of pathways downstream of E-

NMDAR activation, including JNK, Cdk5, and p38 

inhibitors [146]. Because mGluR5 receptors are 
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mechanistically coupled to NMDARs, NMDA 

excitotoxicity can be mediated by mGluR5 activity, 

creating a positive feedback loop whereby activation of 

one potentiates the activity of the other [148, 149]. 

Inhibition of mGluR5 activity prevents the block of LTP 

induced by Aβ [143, 146] and is neuroprotective against 

Aβ [150-153].  

In addition to decreasing LTP, Aβ can also induce 

LTD [124, 147, 154]. For example, the addition of 

soluble Aβ1-42 (500 nM - 2μM) to hippocampal slices 

results in enhanced LTD that is induced by low-

frequency stimulation [154]. The exact mechanism by 

which Aβ induces LTD has not yet been elucidated, 

though the necessity of the mitogen-activated protein 

kinase, p38, has been suggested by some [154], but not 

all, studies [124]. Similarly, there is not a consensus as to 

whether Aβ-mediated LTD is NMDAR-dependent. 

Some studies contend that Aβ-mediated LTD is mGluR-, 

but not NMDAR-, dependent [154]; addition of a non-

selective Group I/II mGluR antagonist, LY341495 

(10μM), enhances Aβ-mediated LTD, whereas 

application of an NMDAR antagonist, D-AP5 (50 μM), 

has no effect [154]. However, it has been noted that 

whether Aβ-enhanced LTD is mediated by mGluR or 

NMDAR activity depends not only on the induction 

protocol used, but also on the dose of AP5 (50 vs 100 

uM) [124].  

Thus, the Aβ-mediated increase in glutamate 

resulting from increased glutamate release, either from 

presynaptic neurons or astrocytes, is predicted to initially 

activate S-NMDARs. However, prolonged activation 

may result in desensitization and ultimately synaptic 

depression, possibly via internalization of 

NMDA/AMPA receptors. The increased levels would 

also spillover to activate E-NMDARs, resulting in LTD 

and blockade of LTP. Finally, the Aβ-mediated 

decreases in glutamate clearance may result in the spread 

of glutamate to neighboring synapses, thereby altering 

neuronal network activity.  

The link between Aβ and glutamate excitotoxicity 

has been firmly established in the literature. However, 

only in the last decade has the role of tau in glutamate 

excitotoxicity been examined. The essential role of tau in 

mediating Aβ toxicity, as well as tau’s direct effects on 

glutamate dysregulation, will be explored below.  

 

Tau and Excitotoxicity  

 

Although historically studied less than Aβ, tau has also 

been implicated in glutamate excitotoxicity and synaptic 

dysfunction (Figure 3). The role of tau in glutamate 
excitotoxicity is established in part by findings that 

NMDAR antagonists prevent tau-mediated cell death 

[e.g., 104]. Much like with Aβ, soluble tau, as opposed 

to tangles, is the more toxic species [155, 156] and can 

cause synaptic dysfunction independently of Aβ (see 

[157] for review). For example, we have shown that tau 

phosphorylation results in mislocalization of tau from 

axons to dendritic spines, resulting in decreased 

expression of AMPA receptors and LTP deficits; 

preventing tau phosphorylation prevented 

mislocalization and rescued LTP deficits [155]. 

A particularly interesting topic of late, however, is 

the notion that tau mediates or enables Aβ‘s excitotoxic 

effects [e.g., 14, 158]. Tau necessity was first shown in 

2002 when primary cultured neurons from tau knockout 

mice were shown to be resistant to Aβ exposure [159], 

but it was not until 2007 that this effect was confirmed in 

vivo by crossing APP transgenic mice with tau knockout 

mice [158]. Since this time, NMDARs, or more 

specifically the NR2B-PSD95-Fyn complex within 

dendritic spines, has been identified as a convergence 

point for tau, glutamate, and Aβ [7, 160].  

Fyn is a tyrosine kinase that phosphorylates the 

NR2B receptor subunit Tyr1472, thereby stabilizing its 

interaction with PSD95, a scaffolding protein in 

dendritic spines [161]. Stabilization of the NR2B:PSD95 

complex enhances the glutamatergic excitotoxicity 

induced by Aβ [14]. Overexpression of Fyn exacerbates 

Aβ-related cognitive deficits and premature lethality 

[162, 163], whereas Fyn ablation protects against Aβ 

toxicity [163]. Tau mediates this process via its binding 

and transport of Fyn to dendritic spines [14]. Tau 

reductions, or expression of tau fragments that cannot 

transport Fyn to dendritic spines, prevent the memory 

deficits and network excitability caused by Aβ [14, 160], 

an effect attributed to a reduction in postsynaptic 

targeting of Fyn [14]. 

Until recently, tau was believed to be restricted to 

axons under physiological conditions, and to mislocalize 

to the somatodendritic regions only during pathological 

events [155]. However, more recent evidence suggests 

physiological tau does localize to dendritic spines [14, 

164] where it binds not only Fyn but also the PSD95-

NMDA receptor complex [164]. This binding, however, 

is phosphorylation dependent; NMDA receptor 

activation increases tau phosphorylation of tau, at 

GSK3β-dependent sites – PHF-1, AT8, and AT180 – 

leading to a decrease in tau’s affinity for PSD95 and an 

increase in tau’s interaction with Fyn. Tau’s increased 

affinity for Fyn is believed to lead to a transient increase 

in synaptic Fyn and hence to a temporary increase in 

NMDA receptor activation before tau-Fyn leaves the 

PSD95-NMDA receptor complex [164].   
Tau phosphorylation also increases NMDA receptor 

transmission and facilitation of LTD [164]. Noteworthy 
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is the finding that NMDA receptor-dependent 

phosphorylation of tau is transient, whereas tau 

phosphorylation after 5 days of Aβ exposure is not [164]. 

Because tau phosphorylation increases facilitation of 

LTD [164] and LTD leads to AMPA receptor 

endocytosis [165], this prolonged tau phosphorylation 

observed after Aβ exposure might explain the 

endocytosis of AMPA receptors induced by Aβ 

oligomers [166], though this has yet to be definitively 

shown.  

Although the investigation into the role of tau in 

glutamate excitotoxicity is a relatively nascent field, it 

warrants attention in that tau likely serves as a mediator 

of Aβ-induced neuronal death [7, 14, 106, 167-169] and 

can induce synaptic dysfunction independently (see 

[157] for review). Similarly, it is becoming clear that 

extrasynaptic NR2B receptors play a prominent role in 

mediating this interaction between Aβ and tau [7, 14, 

164]. Recent work suggests Aβ-induced neuronal death, 

as well as tau phosphorylation via GSK3β, is mediated 

by NR2B- but not NR2A- containing receptors [7]. 

Blockade of NR2B receptors, or removal of tau, prevents 

Aβ-induced neuronal death [7]. However, tau may not be 

necessary for all of Aβ’s effects; Aβ-induced dendritic 

spine loss occurs via a pathway involving NR2A-

containing NMDARs and is tau-independent [7]. Thus, 

further elucidation of tau-dependent and tau-independent 

pathways is needed, as well as a better understanding of 

which NMDA receptors mediate the various pathological 

effects produced by Aβ.  

 

Future Directions  

 

Though the role of the tripartite glutamatergic synapse in 

the pathophysiology of Alzheimer’s disease has become 

much clearer in recent years, several questions still 

remain. Whether the network dysfunction characteristic 

of AD is due in part to an Aβ-mediated spread of 

glutamate from one synaptic domain to the next is still 

unknown. Reports that early Aβ deposition occurs 

preferentially in regions of high neuronal activity [170] 

and that secretion of Aβ is driven by synaptic activity 

[e.g., 171] suggests diffusion of extracellular glutamate 

to neighboring synapses could facilitate the spread of Aβ 

pathology. Similarly, recent work suggests presynaptic 

glutamate release is sufficient to drive tau release into 

the extracellular space [172]. Thus, glutamate-mediated 

exocytosis of tau may indicate one mechanism for the 

trans-synaptic spread of tau pathology associated with 

synaptic activity. A better understanding of the role of 

glutamate in the trans-synaptic spread of pathology could 
facilitate our understanding of risk factors for AD. For 

example, aging, the greatest known risk factor for AD, is 

associated with a decline in glutamate transporters and 

uptake [173, 174], leading to higher levels of 

extracellular glutamate [175]. This age-related increase 

in extracellular glutamate results in greater activation of 

extrasynaptic NMDARs [176, 177] and could potentially 

be permissive for the spread of Aβ and tau pathology 

through vulnerable networks. 

 

Conclusions  

 

The studies reviewed here indicate the glutamatergic 

system, particularly E-NMDARs, play a critical role in 

the synaptic dysfunction and neuronal death triggered by 

both Aβ and tau. Improving our understanding of these 

alterations will hopefully lead to the development of 

therapeutics needed to prevent or attenuate these 

pathological processes.  A greater understanding of the 

role of excitotoxicity in the pathogenesis of AD would 

not only inform therapeutic design for AD but also a host 

of other acute and chronic diseases with excitotoxicity as 

a core feature.  
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