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ABSTRACT: We estimate the weight of various risk factors in heart disease, and the particular weight of 
age as a risk factor, individually and combined with other factors. To establish the weights we use the 
information theoretical measure of normalized mutual information that permits determining both 
individual and combined correlation of diagnostic parameters with the disease status. The present 
information theoretical methodology takes into account the non-linear correlations between the diagnostic 
parameters, as well as their non-linear changes with age. Thus it may be better suited to analyze complex 
biological aging systems than statistical measures that only estimate linear relations. We show that 
individual parameters, including age, often show little correlation with heart disease. Yet in combination, 
the correlation improves dramatically. For diagnostic parameters specific for heart disease the increase in 
the correlative capacity thanks to the combination of diagnostic parameters, is less pronounced than for the 
less specific parameters. Age shows the highest influence on the presence of disease among the non-specific 
parameters and the combination of age with other diagnostic parameters substantially improves the 
correlation with the disease status. Hence age is considered as a primary “metamarker” of aging-related 
heart disease, whose addition can improve diagnostic capabilities. In the future, this methodology may 
contribute to the development of a system of biomarkers for the assessment of biological/physiological age, 
its influence on disease status, and its modifications by therapeutic interventions. 

 
Key words: biomarkers of aging, biomarkers of disease, system aging, normalized mutual information, in silico 
assessment of anti-aging interventions 
 
 
 

Non-communicable chronic diseases are the greatest 
cause of mortality in the world, yearly claiming more than 
34.5 million lives worldwide (66% or 2/3 of global deaths, 
or nearly 100,000 deaths daily) [1]. Hence major efforts 
are directed toward their alleviation. Yet, a crucial point 
is often missing in these considerations, namely, the due 
emphasis on the fact that these diseases are age-related 
diseases, and their main risk factor is not necessarily 
related to environmental risks or life-style choices, but to 
the aging process itself! 

The degenerative aging process lies at the basis of 
most processes of chronic pathogenesis. Thus some of the 
basic processes of aging include such processes as 
somatic mutations, cross-linkage, loss of viable stem cell 

populations, and impairment of the immune function 
which increases the susceptibility of the elderly to severe 
infectious and communicable diseases and reduces their 
responsiveness to vaccination, while at the same time 
aggravating the inflammatory damage to their tissues (the 
so-called “inflammaging”) [2]. And these are precisely 
the main causative factors for the major non-
communicable diseases, such as diabetes, neuro-
degenerative diseases, cancer, and heart disease [3-6]. 
Moreover, the processes of aging exacerbate and reinforce 
the effects of other risk factors of non-communicable 
diseases.  

The relation between non-communicable diseases 
and senescence is exacerbated by the fact that the world 
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population is rapidly aging. Between 2000 and 2050, the 
proportion of the world's population over 60 years is 
expected to double from about 11% to 22%. The absolute 
number of people aged 60 years and over is expected to 
increase from 605 million to 2 billion over the same 
period [7]. Yet, this relation is often underappreciated. 
Thus even some of the most comprehensive analyses of 
risk factors for chronic diseases do not include age. At 
best, various risk factors are assessed for different ages 
[8].  Yet age itself generally is not quantitatively 
considered either as an independent or linked risk factor. 
However, the effects of age may outweigh the seemingly 
well established biomarkers, diagnostic parameters and 
risk factors, which often stop being predictive or show 
unexpected behavior in higher age [9,10]. 

There is an appreciation that the incidence of non-
communicable diseases increases with age steeply, unlike 
the effects of other environmental and life-style factors 
whose influence may be considered steady [11]. Yet, the 
exact weight of age in relation to other risk factors 
remains uncertain. Hence, there is a need to be able to 
determine this weight in order to provide a fuller 
diagnostic and prognostic assessment for age-related 
diseases and design interventions that would be able to 
affect the entire array of risk factors, rather that some 
single, unrelated and purely symptomatic biological and 
physiological markers. 

Such an ability would be especially valuable for 
heart disease, the main age-related disease and cause of 
death in the world [1]. As of 2010, it was estimated that 
the cardiovascular and circulatory diseases represented 
the largest proportion among all causes of mortality, 
causing about 15.6 million deaths, or nearly 30% of the 
total 52.8 million deaths globally, mainly due to ischemic 
heart disease (13.3%), closely followed by ischemic and 
hemorrhagic stroke (11.1%) [1]. Yet, it is also known that 
cardiovascular diseases, and ischemic heart disease in 
particular, can be highly susceptible to therapeutic and 
lifestyle interventions, capable of dramatically extending 
the health and longevity of the subjects [12]. Hence it is 
of primary importance to be able to assess the entire array 
of risk factors as well as the effects of therapeutic 
interventions on the risk factors, either individually or in 
combinations, including age. If age is the main risk factor, 
then it may well be that the primary target of the 
therapeutic and lifestyle intervention would be the aging 
process itself [13]. 

Here we apply the information theoretical measure 
of normalized mutual information (uncertainty 
coefficient) to determine precisely the weight of various 
risk factors in heart disease, and the particular weight of 
age as a risk factor, individually and combined with other 
factors, on the given sample and range of parameters. To 

do so, we introduce the concepts: “combined” or “general 
marker” (parameter) and “metamarker”.  The “combined” 
or “general marker” (parameter) is a group of biomarkers 
whose combined influence on the disease under 
consideration, substantially exceeds the influence of 
every separate marker in the group. The “metamarker” is 
the biomarker (parameter) whose presence in the 
combined markers substantially increases the influence of 
those combined markers. The problem can be stated as 
follows: There is a group of parameters (markers) and 
several sets, related to the disease under consideration. As 
a result of the sets analysis, we need to obtain such a 
partition of the group of parameters, in which every 
cluster contains parameters “related in the same measure” 
with the disease under consideration. Then, using the 
obtained partition of the group of parameters, we need to 
find the combined markers and the metamarkers of the 
disease under consideration. 
 
MATERIALS AND METHODS 
 
Algorithm of partition of a set of parameters 
 
Let there be K sets, and the data in each set are represented 
in the form of Table 1, where each subject of the set is 
described by n parameters. The set of n parameters needs 
to be partitioned into subsets, where each subset contains 
parameters correlated in the same measure with the 
disease. 
 
 The partition algorithm consists of 4 procedures: 

1. Discretization of continuous parameters. 
2. Construction of a table of the parameters’ 

influences on the disease (the table of the 
parameters’ values of normalized mutual 
information). 

3. Construction of a table of the parameters’ ranks. 
4. Partition of the parameters. 

 
 The detailed partition algorithm is as follows: 

1. Discretization of continuous parameters.    
 This procedure transforms parameters having 
continuous values into parameters having discrete values. 
The discretization can be done taking into account the 
properties of the parameters and their biological and 
physiological meaning (above or below a certain salient 
physiological threshold) [14]. If the parameters do not 
have the corresponding properties or we are unaware of 
them, then we can use the formal rules of discretization 
[15]. 
        2. Construction of the table of the parameters’ 
uncertainty coefficients (values of normalized mutual 
information)  
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Table 1. The presentation form of the sample dataset 

 Parameter 1  (X1) Parameter 2  (X2) … Parameter n  (Xn) Disease 

Subject 1 x(1,1) x(1,2) ... x(1,n) y(1) 

Subject 2 x(2,1) x(2,2) ... x(2,n) y(2) 

... ... ...  ... ... 

Subject m x(m,1) x(m,2) ... x(m,n) y(m) 

 
 
 

 For the parameter ix  where 1<i<n for each set j where 

1<j<k, we calculate the value of normalized mutual 
information

ijc  [16, 17]. 
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where ( )iH x , ( )H y , ( , )iH x y  are entropies of 

random values ix , y , ix y , respectively. We 

construct Table 2, n  k of the uncertainty coefficients

[ ]ijc . 

 
 
 
 
 
     Table 2. Values of Normalized Mutual Information (C) 

 Datasets 

Parameters   Hungary Va Long Beach Cleveland 
P1 age 0.01902 0.02389 0.03124 

P3 cp 0.15316 0.03541 0.12281 
P4 trestbps 0.01392 0.02105 0.00786 

P5 chol 0.02352 0.01895 0.00564 

P6 fbs 0.01749 0.00543 0.01104 
P7 restecg 0.01699 0.02103 0.02505 
P8 thalach 0.04772 0.00933 0.05168 

P9 exang 0.14928 0.04466 0.07769 

P10 oldpeak 0.15251 0.03931 0.07685 
       For the description of parameters, see “Materials and Methods. Case Materials” 

 

  
 
 
 

 
 
 Properties of the uncertainty coefficient ijc   [17, 18]: 
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     1)   0  ijc   1; 

     2) 
ijc = 0 if and only if ix  and y  are mutually 

independent in the set j;  
     3)   

ijc = 1 if and only if there exists a functional 

relationship between ix  and y  in the set j.  

       Thus, values of the uncertainty coefficient 
(normalized mutual information) closer to zero indicate a 
smaller degree of correlation, while the coefficient values 
closer to 1 indicate a larger degree of correlation. 
      3. Construction of the table of the ranks of parameters. 

 For each column of the table ijc , we rank its elements 

and assign rank 1 to the smallest element of the column. 
We obtain the table n k  of ranks [ ]ijr , where each 

column of the matrix contains ranks from 1 to n. 
      We estimate the influence of the parameter ix  on the 

disease under consideration, compared to other 
parameters, by the sum of elements i of the row of the 
table [ ]ijr . 

In other words, the parameter the least correlated 
with the disease receives the rank 1, while the parameter 
the most correlated with the disease receives the greatest 
numerical rank. Then the ranks from different datasets for 
particular parameters are summated. 
        4. Partition of the parameters. 

Consider Table [ ]ijr as the Friedman statistical model 

[19] and examine the row effect of this table. If the row 
effect exists, then for the clustering, we use the Newman-
Keuls test of multiple comparisons [20]. In this way, we 
determine clusters or groups of parameters correlated with 
the disease in a relatively larger or smaller extent. 
 
Estimation of the correlation of a combined marker 
with disease 
 
In order to estimate the correlation between a combined 
marker and disease, we need to estimate the combined 
correlation of all the markers comprising the combined 
marker with the disease under consideration. For a 
combined marker comprised of two markers, this is done 
in the following way: 
        Let the combined marker Z be comprised of two 
discrete markers 1 z and 2 z , while the marker 1 z  

assumes two values: 0 and 1, and the marker 2 z  assumes 

three values: 0, 1 and 2. Then the correlation of the 
combined marker Z with the disease under consideration 
is estimated by the correlation of a “single marker” 

assuming 6 values in accordance to the values of the 
single markers 1 z and 2 z : (0,0) – 0, (0,1) – 1, (0,2) – 2, 

(1,0) –3, (1,1) – 4, (1,2) – 5. We proceed in the same way 
for combined markers comprised by more than two 
markers.  
         It is important to note, that for the analysis of 
combined markers, there is a need for datasets much 
larger than for the analysis of single markers. Therefore, 
for the analysis of combined markers, we used the 
“Cleveland dataset” consisting of 297 patients and the 
most thorough set of parameters (see the section below 
“Case Materials”). Such a sample size allows us to 
analyze triple combined parameters.  
 
Case Materials 
 
For the heart disease assessment, we used the Heart 
Disease Data Set from the University of California, Irvine 
(UCI) Machine Learning Repository [21]. The dataset 
includes healthy subjects and heart disease patients, aged 
34-77. The entire dataset contains 76 attributes, but all 
published experiments refer to using a subset of 14 of the 
parameters. Here we also use the maximal set of 14 
parameters (markers), or less when no data were available 
for a specific subset. The parameters (P) are: P1 - Age 
(years); P2 - Sex; P3 - Chest pain type (cp) ; P4 - Resting 
blood pressure (in mm Hg on admission to the hospital, 
trestbps); P5 - Serum cholesterol in mg/dl (chol); P6 - 
Fasting blood sugar (discretized above and below 120 
mg/dl, fbs); P7 - Resting electrocardiographic results 
(discretized, restecg); P8 - Maximum heart rate achieved 
(thalach); P9 - Exercise induced angina (exang); P10 - ST 
depression induced by exercise relative to rest (oldpeak); 
P11 - The slope of the peak exercise ST segment (slope); 
P12 - Number of major vessels colored by fluoroscopy 
(discretized, ca); P13 - Thalium heart scan (normal, fixed 
defect, reversible defect, thal); P14 - The predicted 
attribute - diagnosis of heart disease (angiographic disease 
status, num) with value 0 for diameter narrowing < 50% 
and value 1 for diameter narrowing > 50%, in any major 
vessel.  

The overall dataset contains 4 databases concerning 
heart disease diagnosis. The data were collected from the 
following four locations: 1. Cleveland Clinic Foundation 
(Cleveland data); 2. Hungarian Institute of Cardiology, 
Budapest (Hungarian data); 3. V.A. Medical Center, Long 
Beach, CA (Long Beach VA data), 4. University Hospital, 
Zurich, Switzerland (Switzerland data). Hence the data 
will be referred to according to the location. 

This study focuses on the role of age as a potential 
risk factor for the development of heart disease. In order 
to compare the influence of the parameter “age” (P1) with 
the influences of other parameters on the disease, we 
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considered three of the datasets and selected the 
parameters – P3 (Chest pain type), P4 (Resting blood 
pressure), P5 (Serum cholesterol), P6 (Fasting blood 
sugar), P7 (Resting electrocardiographic results), P8 
(Maximum heart rate), P9 (Exercise induced angina) and 
P10 (ST depression) – that were the most fully represented 
in the subsets. After removing from consideration the 
subjects with missing parameter values, we obtained the 
samples of the following sizes: Hu (Hungary) – 261 
people, Va (VA Long Beach) – 133 people, Cl 
(Cleveland) – 297 people. Further, for the analysis of 
combined markers, including age, we focused on the 
largest and most complete Cleveland dataset, using all the 
14 parameters represented.  
 
RESULTS 
 
Partition of the parameters 
 
Now we consecutively perform the four procedures of the 
partition algorithm.  
 
1. First, we perform the discretization of the continuous 
parameters. For the Hungarian, Long Beach and 
Cleveland datasets, the discretization of the age (P1) was: 
under 50, 50-59, 60 and over. The discretization 
thresholds for the other continuous parameters were 
selected as roughly corresponding to the common clinical 
diagnostic ranges.  For the parameter P4 (Resting blood 
pressure), the discretization was: less than 140, equal and 
above 140; for the parameter P5 (serum cholesterol) – less 
than 200, equal and above 200 and less than 240, equal or 

over 240; for the parameter P8 (maximum heart rate) – 
below 160, equal and above 160; for the parameter P10 
(ST depression) – less than 1, equal and above 1.     

Other parameters were already discretized in the 
original dataset as follows: P2 (sex) - 1 = male; 0 = 
female; P3 (chest pain type, cp) - Value 1: typical angina, 
Value 2: atypical angina, Value 3: non-anginal pain, 
Value 4: asymptomatic; P6 (fasting blood sugar, fbs)  > 
120 mg/dl, 1 = true; 0 = false; P7  (resting 
electrocardiographic results, restecg) - Value 0: normal, 
Value 1: having ST-T wave abnormality (T wave 
inversions and/or ST elevation or depression of > 0.05 
mV), Value 2: showing probable or definite left 
ventricular hypertrophy by Estes' criteria; P9 (exercise 
induced angina, exang) - 1 = yes; 0 = no; P11 (the slope 
of the peak exercise ST segment  slope, slope) - Value 1: 
upsloping, Value 2: flat, Value 3: downsloping; P12 
(number of major vessels colored by fluoroscopy, ca) -  0-
3; P13 (Thalium heart scan, thal) -  3 = normal; 6 = fixed 
defect; 7 = reversible defect. Table 1 shows the general 
form of data presentation. 

 
2. Then we compute the matrix ijc  of uncertainty 

coefficients. We obtain Table 2. 
 
3. We rank entries of each column of the coefficients 
matrix ijc . We obtain the matrix [ ]ijr  shown in Table 3.  

4. Finally, we consider Table 3 as the Friedman statistical 
model [19] and examine the row effect of this table. 
 

Table 3. Parameter ranks 

 

Parameters   Hungary     Va Long Beach   Cleveland Sum of ranks 
P1 age 4 6 5 15 
P3 cp 9 7 9 25 
P4 trestbps 1 5 2 8 
P5 chol 5 3 1 9 
P6 fbs 3 1 3 7 
P7 restecg 2 4 4 10 
P8 thalach 6 2 6 14 
P9 exang 7 9 8 24 
P10 oldpeak 8 8 7 23 

 
 

Hypotheses: 
H0: There is no row effect (“null hypothesis”). 
H1: The null hypothesis is invalid. 
Critical range. The sample is “large”, therefore the 
critical range is the upper 5%-range of the 2

8   distribution. 

Calculation of the 2  -criterion [19] gives 2 = 19.28. The 

critical range is 2
8  > 15.51. Since 19.28 > 15.51, the null 

hypothesis with respect to Table 3 is rejected. Thus, 
according to the Friedman test, the row effect exists. 
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Hence, there is a difference between the rows under 
consideration.  

For clustering (partition of parameters), we use the 
Newman-Keuls test for multiple comparisons [20]. For 

 T =0.05 (  T  is the probability at least once to 

erroneously identify differences) we obtain the critical 
range for the comparison interval 2 equal 3.39 and 

1 3.39j jR R   where Rj and Rj+1 are the elements of the 

column “Sum of ranks” in the j-th and (j+1)-th rows of 
Table 4 respectively (in other words, Rj and Rj+1 are the 
parameters represented by sums of ranks of the 
corresponding samples). 

By the multiple comparisons, we construct the 
clustering (partition) shown in Table 4. The obtained 
clustering possesses the following properties: For two 
neighboring clusters of Table 4, the smallest element of 
one cluster and the greatest element of another cluster 
located nearby are significantly different ( T =0.05); 

Elements belonging to the same cluster do not differ from 
each other ( T =0.05). These properties allow us to 

categorize several groups of parameters according to their 
extent of correlation with disease. 
 

 
                Table 4. Parameters partition 
 

No. Clusters Parameters Sum of ranks 
1 Cluster 1 P3 cp 25 
2  P9 exang 24 
3  P10 oldpeak 23 
4 Cluster 2 P1 age 15 
5  P8 thalach 14 
6 Cluster 3 P7 restecg 10 
7  P4 trestbps 9 
8  P5 chol 8 
9  P6 fbs 7 

 

 

The parameters’ influence on the disease 
 
Table 4 shows the partition of parameters P1, P3, …, P10, 
according to the estimate of their correlation with the 
disease (Parameter P14). The parameters P3 (Chest pain 
type), P9 (Exercise induced angina) and P10 (ST 
depression, a salient marker of ischemia) show the 
strongest correlation with the disease. This is little 
surprising, as these parameters are directly indicative of a 
clinical, even severe state of heart disease. Yet, out of the 
parameters less directly connected with the disease, the 
influence of age (Parameter P1) is the strongest (the 
second cluster of Table 4). Right next to it is such a salient 
diagnostic marker as the maximum heart rate achieved 
(Parameter P8, Cluster 2). The influence of age on heart 
disease is much greater than the influence of the 
parameters comprising the third cluster: P4 (Resting 
blood pressure), P5 (Serum cholesterol), P6 (Fasting 
blood sugar) and P7 (Resting electrocardiographic results) 
that are routinely used for assessing heart condition. Thus 
the parameter “age” contains the largest amount of 
information about heart disease compared to all non-
specific parameters (i.e. parameters not directly related to 
a severe clinical state). Hence it is justified to consider the 

parameter “age” as a “metamarker”, i.e. a biomarker 
(parameter) whose presence substantially increases the 
diagnostic capacity of other markers. And hence, we will 
consider combined (multivalent) markers, containing the 
parameter “age”. 
 
Combined Markers 
 
For the assessment of combined markers we use the 
Cleveland database, as the most complete one, containing 
14 parameters (the 14th parameter is the predicted 
parameter – the presence of heart disease). Table 5 shows 
the correlation of single markers with the disease. Table 6 
shows the influence on the disease from combined double 
markers, each containing age and another marker. Table 7 
shows the influence of combined markers, each 
comprised of two commonly used clinical diagnostic 
parameters, on the disease. Finally, Table 8 shows the 
influence of combined markers, each containing 3 
markers including age.  As can be seen, the combined 
markers are much more informative regarding the disease 
status than single markers.  
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Table 5. Influence of single parameters 

No. Parameters 
Values of normalized  
mutual information (C) 

1 P13 thal 0.1316 
2 P12 ca 0.13083 
3 P3 cp 0.12281 
4 P9 exang 0.07769 
5 P10 oldpeak 0.07685 
6 P11 slope 0.07549 
7 P8 thalach 0.05168 
8 P2 sex 0.03164 
9 P1 age 0.03124 
10 P7 restecg 0.02505 
11 P6 fbs 0.01104 
12 P4 trestbps 0.00786 

13 P5 chol 0.00564 
 

For the description of parameters, see “Materials and Methods. Case 
Materials” 

As Table 5 shows, the influence of single parameters 
on the disease is rather low, with the normalized mutual 
information values ranging from 0.1316 for the heart 
defect scan to 0.00564 for cholesterol. The parameters 
directly associated with the clinical, even severe heart 
conditions provide better correlation (mutual information) 
values than the less specific parameters. Thus the single 
parameter results can be roughly divided into two groups. 
The parameters specific for heart disease have a higher 
correlation with the disease (C): P13 (heart defect scan), 
P12 (number of colored blood vessels), P3 (chest pain), 
P9 (exercise induced angina), P10 (ST depression), P11 
(ST segment slope). The C values in this group range from 
0.1316 for the heart defect scan to 0.07549 for the ST 
segment slope. The less specific parameters have lower 
correlation with the disease: P8 (maximum heart rate), P2 
(sex), P1 (age), P7 (resting ECG), P6 (fasting blood 
sugar), P4 (resting blood pressure), P5 (Cholesterol). In 
this group, the mutual information values range from 
0.05168 for the maximum heart rate to 0.00564 for 
cholesterol. 
        Yet, the combined consideration of several markers 
improves the correlation values dramatically. As shown in 
Table 6, when considering any diagnostic parameter in 
combination with age, the correlation value of the 
combined marker is increased. Still the combinations of 
age with specific markers of heart disease rank higher. 
However, the increase in correlative value is not 
extremely pronounced. For example, for the heart defect 
scan (P13) alone the correlation with the disease is 0.1316. 
For age (P1) alone, the correlative value is 0.03124. Yet, 
for their combination (P1+P13) it is 0.18501. Yet, for the 
less specific parameters, the combined consideration with 
age substantially increases the correlation value. Thus, for 

fasting blood sugar (P6) alone the correlation is 0.01104. 
Yet for its combination with age, the correlation value is 
already 0.05269. Nonetheless, despite the apparent large 
relative increase, the obtained absolute value is still rather 
low and would not allow to make any reliable diagnostic 
conclusions.  
 

Table 6. Combined influence of age (P1) with other 
parameters 
 

No. Parameters 
Values of normalized 

mutual information (C) 
1 P1, P12 ca 0.18501 
2 P1, P13 thal 0.17928 
3 P1, P3 cp 0.17886 

4 
P1, P9 
exang 

0.11853 

5 
P1, P11 
slope 

0.11404 

6 
P1, P8 
thalach 

0.09757 

7 
P1, P10 
oldpeak 

0.09735 

8 P1, P2 sex 0.09135 

9 
P1, P7 
restecg 

0.06918 

10 P1, P5 chol 0.06582 
11 P1, P6 fbs 0.05269 

12 
P1, P4 
trestbps 

0.03981 

 
       

Also when considering other double diagnostic 
markers (apart from age), the correlation value is 
substantially increased as compared to each marker 
separately (Table 7). For the double diagnostic markers, 
the highest correlation value is obtained for the 
combination of P12 (the number of major vessels colored 
by fluoroscopy, a clear and specific indicator of ischemic 
insufficiency) and P13 (Thalium heart scan, clearly and 
specifically indicating a heart defect). The combined 
influence for P12 and P13 is 0.27686. Yet, for each of 
these specific parameters, the correlation value is also 
relatively high: 0.1316 for P13 (heart scan) which is the 
highest rank among the single parameters, and 0.13083 
for P12 (number of vessels) – the second highest rank 
(Table 5). Their combination further substantially 
increases the correlation value. For the less salient, yet 
still fairly specific parameters for heart disease, both the 
individual and combined correlation values are somewhat 
lower. Thus, for the maximal heart rate alone (P8), the 
correlation with heart disease is 0.05168 and for the rest 
ECG (P7) it is 0.02505, whereas their combined influence 
is 0.07135. For the even less specific parameters, both 
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individual and combined influences are lower still. Thus, 
for the resting blood pressure (P4) alone the correlation is 
0.00786, and for cholesterol (P5) it is 0.00564. Yet, for 
their combination (P4+P5), the correlation is already 
0.02157. Apparently the relative increase in correlation 
values is larger for the less specific than for the more 
specific parameters. Nonetheless, even the combination of 
two of the non-specific parameters produces rather small 
absolute correlation values. Hence it is preferable to add 
additional parameters to the combinations, starting from 
triple combined parameters.  
 

Table 7. Influence of several double combined parameters 
on the disease status 
 

 

No. Parameters 
Values of normalized  
mutual    information 
(C) 

1 P12 ca, P13 thal 0.27686 
2 P3 cp, P9 exang 0.1726 
3 P10 oldpeak, P11 slope 0.1174 
4 P7 restecg, P8 thalach 0.07135 
5 P4 trestbps, P8 thalach 0.06878 
6 P5 chol, P8 thalach 0.06877 
7 P6 fbs, P8 thalach 0.06405 
8 P5 chol, P7 restecg 0.05368 
9 P2 sex, P5 chol 0.05067 
10 P4 trestbps, P7 restecg 0.04209 
11 P6 fbs, P7 restecg 0.04082 
12 P4 trestbps, P6 fbs 0.02443 
13 P5 chol, P6 fbs 0.02298 
14 P4 trestbps, P5 chol 0.02157 

 
         When considering triple combined parameters, their 
correlation with the disease is much greater than for 
separate or double parameters (Table 8). Thus for 
example, as noted, the obtained results show that the 
Parameter P5 (cholesterol) by itself shows almost no 
correlation with the disease (the value of normalized 
mutual information is 0.00564). Age and sex separately 
are also very weakly linked with the disease, with the 
normalized mutual information of 0.03124 for age and 
0.03164 for sex. Yet the triple combined marker, 
containing the age, sex and cholesterol, is strongly 
correlated with the disease, with the normalized mutual 
information of 0.15166. It should be noted that further 
addition of diagnostic parameters into large combined 
markers would require larger samples. 
 
Statistical analysis 
 
In order to facilitate the interpretation of the results as well 
as provide a comparison of the proposed method with the 
more commonly used ones, we performed statistical 

analysis. For the three continuous parameters considered 
in this study – P4 (Resting blood pressure), P5 (Serum 
cholesterol) and P8 (Maximum heart rate) – we performed 
an additional analysis of the correlation of the parameters, 
age and disease, using the ANOVA method. For each 
parameter we considered 6 groups: 3 age groups of 
healthy subjects (<50, 50-59, 60+) and 3 corresponding 
age groups of heart patients. Since the sizes of the groups 
are significantly different and for each parameter the 
group dispersions are also different, then instead of the 
standard parametric single-factor ANOVA, we used the 
non-parametric Kruskal-Wallis single-factor ANOVA. 
 For each parameter we consider the hypotheses: 
Н0: all the 6 groups are equally distributed. 
Н1: the null hypothesis is rejected.  
Critical range. The samples are “large”, therefore the 
critical range is the upper 5%-range of the 2

5   distribution. 

The critical range is 2
5  > 11.07.  

The parametric Kruskal-Wallis criterion Н [22] 
equals: for the parameter P4 (blood pressure) Н=32.69; 
for Р5 (cholesterol) Н=14.31; and for Р8 (maximum heart 
rate) Н=67.42. For the parameters P4, P5 and P8, Н > 
11.07 and in all the three cases the null hypothesis is 
rejected. That is to say, the distributions of parameter 
values in the 6 groups are different. Thus, the ANOVA 
results are not at a discrepancy with the proposed method. 
Yet, the proposed method allows to obtain information 
that is in principle unobtainable by ANOVA or other 
linear statistical methods (see the Discussion). 
 
DISCUSSION  
 
The importance of taking into consideration the patients’ 
age in diagnosis and treatment cannot be overestimated. 
In accordance with the Antagonistic Pleiotropy theory of 
aging, entirely opposite diagnostic results can be obtained 
with the same biomarker, and opposite therapeutic results 
can be produced with the same treatment for younger and 
older individuals [23-25]. According to the Antagonistic 
Pleiotropy theory of aging, biological processes adaptive 
and increasing the organism’s reproductive fitness early 
in life, can become maladaptive and lead to senescent 
deterioration late in life. Hence, the same process, and the 
same marker manifesting that process, can be a sign of 
health in young age, and a sign of disease in old age. For 
example, a rapid accumulation of calcium early in life can 
be beneficial for bone and muscle development, hence 
increased stamina. However, later in life, enhanced 
calcium deposition can contribute to atherosclerosis. 
Similarly, high levels of testosterone may give a good 
edge in sexual competition, yet later in life may contribute 
to prostate growth [26-28]. Hence, it appears very 
important to always consider biomarkers and risk factors 
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for diseases in their weighted relation with age. The 
proposed methodology provides, for the first time, the 
capability to precisely weigh age as a risk factor for heart 

disease, as a prime example of age-related disease, either 
individually or in combination with other biomarkers.     
 

 
Table 8. Influence of triple combined parameters 
 

No. Parameters 
Values of normalized 
mutual information (C) 

1 P1 age, P12 ca, P13 thal 0.3753 

2 P1 age, P3 cp, P12 ca 0.36317 

3 P1 age, P11 slope, P12 ca 0.3503 

4 P1 age, P2 sex, P12 ca 0.28037 

5 P1 age, P5 chol, P12 ca 0.2764 

6 P1 age, P7 restecg, P12 ca 0.27107 

7 P1 age, P7 restecg, P13 thal 0.26664 

8 P1 age, P2 sex, P3 cp 0.26048 

9 P1 age, P3 cp, P5 chol 0.2516 

10 P1 age, P5 chol, P11 slope 0.21026 

11 P1 age, P2 sex, P11 slope 0.20168 

12 P1 age, P2 sex, P9 exang 0.19274 

13 P1 age, P5 chol, P9 exang 0.18908 

14 P1 age, P8 thalach, P11 slope 0.18687 

15 P1 age, P2 sex, P5 chol 0.15166 
 

 
 

Currently, the most popular methods for estimating 
heart disease risk factors are scoring (e.g. [29]) and the 
method of logical regression (e.g. [30]). The gist of the 
scoring method is that each risk factor is assigned a score 
and the risk estimate is equal to the sum of particular 
factors’ risk scores found in the patient under 
investigation. In the logical regression method, the risk is 
estimated using a linear equation. Yet, the combined 
influence of factors cannot be estimated by an algebraic 
sum, insofar as for many factors their combined influence 
can greatly exceed the influence of each factor separately 
as well as their sum, that is to say, there can be a 
cumulative effect (“the whole is greater than the sum of 
parts”). Such cumulative effects were found in the present 
study. Also the linear equations of the logical regression 
method are insufficient to describe relations in a complex 
biological system. Unlike the former methods of scoring 
and regression, the proposed approach provides a 
methodologically adequate quantitative estimate for the 
combined influence of weighted risk factors, including 
age, which uncovers the cumulative and non-linear 

influences and which also allows to compare those 
influences.   

The current analysis showed that individual 
parameters exhibit rather weak correlations with the 
disease, even for such routinely used diagnostic 
parameters as cholesterol. In contrast, in combination 
with other parameters, especially age, they often provide 
a good correlation (normalized mutual information). This 
is reasonable, as aging and age-related diseases are 
extremely complex multifactorial processes that can be 
neither treated by a single “magic bullet” nor described by 
a single “magic word”.  Thus it could be expected that a 
combination of diagnostic parameters would increase the 
descriptive/diagnostic value, as was indeed shown by our 
results. (By implication, a combination of treatments 
addressing a combination of biomarkers of aging and 
disease might increase therapeutic benefits, but a 
verification of this supposition is far beyond the scope of 
the present work.)  

As our results show, the correlative value was 
commonly increased by combining virtually any 
parameters relevant to the disease process. For parameters 
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specifically indicative of heart disease, such as those 
clearly indicating an ischemic process (e.g. ST depression 
or number of blood vessels) or advanced dysfunction 
(such as chest pain or exercise-induced angina), both the 
individual and combined correlative values were high. For 
the less direct and less specific parameters, such as blood 
cholesterol and sugar, blood pressure and heart rate, both 
the individual and combined correlative values were 
lower relative to the specific parameters. Yet, the 
combination of the non-specific parameters commonly 
produced a greater relative increase in correlative capacity 
(rise in normalized mutual information) than the 
combination of specific parameters (Tables 5-7). This is 
also reasonable, as with the specific parameters there is 
very little ambiguity regarding every single parameter, 
hence their combination does not improve the diagnostic 
result dramatically. On the other hand, with the less 
specific parameters, each parameter is highly ambiguous, 
yet together they provide an indication of interactions 
determining the functional state of the interrelated system. 
It should be noted, however, that, in absolute terms, 
double non-specific parameters still had rather low 
correlations with the disease status. This finding indicates 
the necessity to consider a larger number of diagnostic 
parameters. 

Time (or age) was shown to be a particularly 
valuable parameter. Among all the less specific individual 
parameters, age was the most informative regarding the 
disease status, providing the highest degree of correlation. 
Furthermore, seemingly non-specific, its addition 
dramatically increased the diagnostic correlations in every 
case and for every other parameter. These findings 
illustrate the crucial role of the aging process for the 
development of age-related pathology. 

The combination of age with cholesterol represents a 
particularly interesting case, also due to the recent 
controversies surrounding the pathogenic role of 
cholesterol. Thus, regarding cholesterol, it has been 
increasingly shown that general cholesterol, the LDL or 
HDL forms, and the use of cholesterol-lowering 
medications are of limited predictive value for heart 
disease or for mortality from heart disease [31]. Often 
various forms of cholesterol can be associated with 
protection against heart disease and extended longevity 
[32]. Furthermore, cholesterol has been suggested to be 
more predictive for heart disease for young individuals, 
and less predictive for older individuals [9,10], and more 
predictive for men and less for women [33]. The present 
findings show almost no correlation of general cholesterol 
with the disease (Normalized mutual information 
C=0.00564), while it is much stronger correlated with the 
disease when combined with age (C=0.06582), and in the 
triple combination with sex, the correlation is even 

stronger (C=0.15166). These findings further emphasize 
the importance of considering metamarkers and combined 
markers, especially taking into account the age of the 
patient. Yet, it should also be emphasized that these 
findings mainly illustrate the validity of the proposed 
methodology and a proof of principle. The validity of the 
actual specific epidemiological results will yet require a 
thorough verification on a much larger and more 
representative sample.    

The present methodology, using information 
theoretical measures of correlation (normalized mutual 
information) is well suited to consider the combined 
influence of various parameters on the disease status, as 
well as the contribution of age. It is well recognized that 
in biological systems, the relations between parameters 
are non-linear. Yet many (perhaps even most) studies a 
priori assume linear relations and normal distribution of 
parameters, and use linear measures of correlation, such 
as the correlation coefficient [34, 35]. In particular, the 
common use of the correlation coefficient in the 
assessment of disease risk factors a priori assumes a 
Gaussian distribution of parameters and linearity of 
correlations. The present use of the uncertainty coefficient 
(normalized mutual information) as the measure of 
correlation [17] does not assume any limitations on the 
distribution and correlation of parameters. Using the 
uncertainty coefficient, interesting results have been 
obtained in medicine [17], and in particular in oncology 
[36-38]. The Newman-Keuls method for multiple 
comparisons has been further successfully used for the 
analysis of biomedical data [39-41].   

It is especially important to consider the parameters’ 
non-linearity when referring to age and aging. It is well 
recognized that biomarkers of “physiological” or 
“biological age” are better correlated with “chronological 
age” for young and healthy adults. Yet, at older ages, the 
correlations break down, mainly due to non-linearity of 
diagnostic parameters [42]. Yet, many biomarkers assays 
still attempt to use linear measures that do not fully 
correspond to physiological reality [35]. The present 
methodology takes into account the non-linear 
correlations between the diagnostic parameters, as well as 
their non-linear changes with age. Thus the information-
theoretical methodology is well equipped to demonstrate 
the crucial weight of age as a risk factor in the formation 
of heart disease. 

To provide a comparison with the commonly used 
methods, we performed non-parametric Kruskal-Wallis 
single-factor ANOVA, as ANOVA is currently the most 
popular method of parameter analysis. We found that the 
results of the ANOVA method are not at a discrepancy 
with the information-theoretical method. Yet, the 
parametric ANOVA is suitable for the analysis of 
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parameters having Gaussian distribution, while the non-
parametric ANOVA is suitable for parameters whose 
values can be represented as ranks. Unlike ANOVA, the 
information-theoretical method, using mutual 
information, is suitable for discrete (nominal) parameters 
and can analyze any type of parameters, after 
transformation of continuous and ranked parameters into 
discrete ones. The information-theoretical method thus 
provides a quantitative dimensionless estimate of the 
influence (correlation) between parameters and this 
allows the comparison of different parameters, obtained 
in different types of experimental models, which is not 
possible with the ANOVA method. However, in some 
cases, it may be beneficial to supplement the information-
theoretical method with statistical methods, such as 
ANOVA, to facilitate the interpretation of results, for 
example to establish trends of decrease or increase of 
particular values with age. Yet, only using the 
information-theoretical measure it becomes possible to 
establish precisely the weight of age as a risk factor, alone 
and in combination with other factors. 
          The assertion of the importance of age (aging) as a 
risk factor for heart disease may have far reaching 
implications for diagnosis and treatment as it may 
motivate the physicians to apply greater discrimination 
for aged patients. This assertion may even have 
implications for research policy and public health policy. 
There is a growing realization that a promising and cost-
effective strategy to combat severe non-communicable 
diseases is to give a greater focus of health research from 
attempting to address individual diseases and symptoms 
to addressing their underlying root cause and main risk 
factor – the degenerative process of aging [43]. Such an 
approach has already yielded in the past valuable 
strategies to combat non-communicable diseases. 
Historical examples include probiotic diets, cell therapy 
and adjuvant immunotherapy that were born from 
biological research of aging [44]. Further emphasis on 
treating, delaying or even reversing the seemingly 
“general” and “systemic” biological processes of aging 
may likely produce not just a general improvement of the 
functional state of the aged, but also further advances in 
the treatment of specific age-related non-communicable 
diseases, such as heart disease. The current work, for the 
first time quantitatively demonstrating the weight of age 
(aging) as a risk factor for heart disease, gives further 
support to this approach. It further emphasizes the need to 
intervene into the basic aging processes for developing 
effective therapies for age-related diseases. 
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