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ABSTRACT: Dopamine (DA) is one of the major neurotransmitters and participates in a number of 

functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation 

etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors 

(D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous 

system (CNS) and play an important role in not only in physiological conditions but also pathological 

scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis 

Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as 

Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of 

DAergic system has been observed and most of the times, those changes occur as a mechanism of 

compensation, but in some cases contributes to worsening the alterations. Here we review the changes that 

occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction 

pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better 

understanding of the role of DA receptors in neuropathological conditions is crucial for development of 

novel therapeutic approaches to treat alterations related to neurodegenerative diseases. 
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Dopamine (DA) is a catecholamine neurotransmitter 

widely distributed in the central nervous system (CNS) 

and some peripheral areas including cardiovascular and 

renal system. In the brain, DA is involved in control of the 

movements, cognition, emotions, memory, reward 

mechanism and the regulation of prolactin secretion by 

the pituitary. Several diseases have been related with 

disturbances of DA transmission like neuropsychiatric 

disorders, such as attention deficit hyperactivity disorder 

(ADHD), Tourette Syndrome (TS), schizophrenia, 

psychosis, depression, etc., and with neurodegenerative 

diseases like Parkinson’s disease (PD), Huntington 

disease (HD), multiple sclerosis (MS). Here, we will focus 

on the role of dopamine receptors and changes in their 

signal transduction pathways in neurodegenerative 

diseases. 

Historically, the importance of the DAergic system in 

the brain was pointed out due to the investigation of PD, 

which is the result of degeneration of the DAergic neurons 

of substantia nigra pars compacta (SNc). There are three 

main sources of DA in the CNS: the nigrostriatal pathway, 

the mesocorticolimbic pathway and the 

tuberoinfundibular pathway, all of them involved in 

different neurophysiological features.  
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Figure 1. The D1-like DA Receptors Intracellular Signal Pathways. Shows the DA mediated effects through D1-like 

DA receptors that by the activation of intracellular signals. Stimulatory effects are indicated with red arrows and 

inhibitory effects in blue line ended with a circle.  cAMP,  3'-5'-cyclic adenosine monophosphate; s/olf or q ATP, active 

G protein; PKA, protein kinase A; DARPP-32, dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa; AC, 

adenylyl cyclase; PP1, PP2A or PP2B, protein-phosphatase 1, 2A or 2B; PKC, protein kinase C; PLC, phospholipase C; 

IP3, inositol triphosphate; mTOR, mammalian target of rapamycin; PIP2, phosphatidylinositol 2; Ca2+, calcium; MAPK, 

mitogen-activated protein kinase EPAC-GEF, guanine-nucleotide-exchange factor of Rap1; Rap1, Ras proximate 1. 

AMPA, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA, N-methyl-D-aspartate; GABAA, γ-

Aminobutyric acid A; CREB; cAMP response element-binding protein. 

 

The nigrostriatal pathway is related with motor 

function, the SNc send its projections to the dorsal 

striatum and regulates through DA release and its 

receptors the activity of the basal ganglia networks, the 

coordinated movements is the result of the balance of the 

basal ganglia circuitry. In the mesocorticolimbic pathway 

the ventral tegmental area (VTA) projects to the ventral 

striatum or nucleus accumbens (Nacc), amygdala, 

olfactory bulb, hippocampus, cingulate gyrus and orbital 

and medial prefrontal cortex, this pathway is related with 

the cognitive function, motivation and emotion. Finally 

the tuberoinfundibular pathway where, the arcuate 

nucleus of the hypothalamus projects to the anterior 

pituitary delivering dopamine and controlling 

neuroendocrine functions such as the secretion of 

prolactin [1, 2]. 

The physiological effects of DA are mediated by 

dopaminergic receptors, which have widespread 

expression throughout the brain. In fact DA receptors are 

the main target of several drugs such as psychostimulants 

and antipsychotics. Interestingly DA receptors expression 

and intracellular signal transduction pathways, change 

during degenerative process and neurotoxicity worsening 

the symptoms and/or progression. 

 

Dopamine and Receptors Function 

 

The DA receptors (DARs) belong to the G protein coupled 

receptors family (GPCRs). There are five subtypes of 

mammalian DARs that are divided in two families 

according their structure and biological response. The D1-

like family includes D1 and D5 DA receptors (D1R and 
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D5R), while D2-like DARs family consist of D2, D3 and 

D4 receptors (D2R, D3R and D4R).  

Typically the D1-like dopamine receptors family 

(D1Rs) are positively coupled to adenylyl cyclase (AC) 

inducing the intracellular cyclic 3,5 adenine-

monophosphate (cAMP) accumulation and the activation 

of the protein kinase dependent of cAMP (PKA) (Fig. 1), 

in contrast the D2-like dopamine receptors family (D2Rs) 

are negatively coupled to AC, as a result their activation 

decreases the cAMP accumulation [3, 4] (Fig. 2), 

modulating the activity of PKA and its effectors [5]. 

However growing evidence has shown that activation of 

DARs is not only restricted to the AC modulation but also 

other signal pathways and might act differently depending 

of the brain area, physiological and/or pathological 

conditions that we will discuss further.  

D1-like Dopamine Receptors Expression and Signal 

Transduction Pathways 

 

The D1Rs share 80% in the amino acid sequence 

homology with D5Rs in the transmembrane domains [6, 

7], this family of receptors is widely expressed in the 

brain, with higher densities in striatum or caudo-putamen, 

Nacc, substantia nigra pars reticulata (SNr) and olfactory 

bulb [8]. Moderated expression in the entopeduncular 

nucleus, cerebral aqueduct and ventricles [9] and lower 

densities has been reported in the dorsolateral prefrontal 

cortex, cingulate cortex and hippocampus [10, 11], D1Rs 

play an important role in locomotor activity, reward 

systems, learning and memory [12].  

 

 

 

 
 
Figure 2. The D2-like DA Receptors Intracellular Signal Pathways. Shows the DA mediated effects 
through D2-like DA receptors that occur by a complex activation of intracellular signals that are related with 
events such as neurodevelopment, proteasomal degradation, cell proliferation and cognitive process. 
Stimulatory effects are indicated with red arrows, dashed red arrow indicates plausible activation and 
inhibitory effects in blue line ended with a circle.  cAMP,  3'-5'-cyclic adenosine monophosphate; i/o ATP, 
active Gi/o protein; PKA, protein kinase A; DARPP-32, dopamine and cyclic AMP-regulated phosphoprotein, 
32 kDa; AC, adenylyl cyclase; PP1, PP2A or PP2B, protein-phosphatase 1, 2A or 2B; MAPK, mitogen-activated 
protein kinase; PKC, protein kinase C; Akt, thymoma viral proto-oncogene; GSK-3, Glycogen Synthase 
Kinase-3; PLC, phospholipase C isoform ; PI3K, phosphatidylinositol 3-kinase; PIP2, PIP3, 
phosphatidylinositol 2 and 3; IP3, inositol triphosphate; Ca2+, calcium ; GIRK, G protein coupled inward 
rectifier potassium; MEK; Raf,; ERK, extracellular signal-regulated kinase protein kinase; PDK, 
phosphoinositide-dependant kinase; mTOR, mammalian target of rapamycin; p70S6, p70S6 kinase; rpS6, 
ribosomal S6 protein; 4E-BP, eukaryotic initiation factor 4E-binding protein 1. 
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Typically D1Rs induces the activation of the AC 

through the direct activation of guanosine nucleotide-

binding proteins (G-proteins), the subunit Gαs/olf of G-

proteins binds to the catalytic subunit C2 of the enzyme 

inducing the interaction between the subunits C1-C2 of the 

AC which in turn, induces the conversion of adenosine 

triphosphate (ATP) into cAMP [13, 14].  The cAMP 

interacts with the regulatory subunits of PKA inducing the 

release of the catalytic subunits that phosphorylate 

different substrates [15, 16]. One of the most studied 

proteins involved in the regulation of signal transduction 

pathway mediated by DARs and PKA is the Dopamine 

and cAMP-regulated phosphor-protein, 32 kDa (DARPP-

32). In fact dopamine receptors co-localize with DARPP-

32 in several brain regions [17]. The phosphorylation of 

DARPP-32 by the PKA in the threonine-34 residue 

induces the inhibition of the protein phosphatase-1 (PP1) 

[18], while the phosphorylation of the residue threonine-

75 of DARPP-32 by cyclin-dependent kinanse 5 (Cdk5) 

induces the inhibition of PKA [19, 20] causing a feedback 

loop in the activation of the PKA (Fig. 1). The activation 

of the PKA same as the inhibition of PP1 mediated by 

PKA, may cause directly changes in the phosphorylation 

state of several channels such as α-Amino-3-hydroxy-5-

methyl-4-isoxazole-propionic acid receptors (AMPA), 

Gamma Aminobutyric Acid channel A (GABAA), N-

methyl-D-aspartate (NMDA), GABAA, L-, N-, P-type 

Ca2+ that play an important role in the electrical properties 

of the neurons [21, 22, 23, 5, 24], the PKA directly or 

through DARPP-32 can also regulates extracellular signal 

regulated kinases 1 and 2 (ERK 1/2) involved in the 

changes in the protein transcription, this pathways has 

been related with pathological conditions in PD [25].  

D1Rs may elicit an alternate cAMP signaling 

pathway non-dependent of PKA [20]. The cAMP can 

activate through the Ras superfamily guanine nucleotide 

exchange factors (GEFs), which are activators of Ras and 

Ras-like small G-proteins, specifically has been shown 

activates Ras-proximate 1 (Rap1) [26] that has been 

involved in cell polarity and migration [27; 28], Rap1 can 

also activate MAPK signaling implicated in the 

phosphorylation of transcription factors such as cAMP 

response element binding protein (CREB) that is involved 

in the increased or decreased transcription of genes [29]. 

D1Rs family also activates a signal transduction 

pathway that has been related with various 

neuropsychiatric disorders, activating the phospholipase 

C (PLC), mediated by a single transmembrane protein 

calcyon, which promotes the D1Rs interaction with Gαq 

instead Gαs/olf [30], as a result PLC is activated and 

increases the accumulation of inositol triphosphate (IP3) 
which in turn binds to the IP3 receptors from the 

intracellular compartments inducing intracellular Ca2+ 

release (Fig.1). Ca2+ plays an important role not only in 

signaling pathways causing the activation of proteins such 

as protein kinase calcium-dependent (PKC) but also in the 

modulation of neurotransmitters release by exocytosis. It 

has been shown that this particular signaling pathways 

occurs primary in the prefrotal cortex and calcyon has 

been found co-localize with D1Rs in the dendritic spines 

on the pyramidal neurons [31]. The activation of this 

pathway in the medial prefrontal cortex is involved in 

impulsive choice in rats and neuropsychiatric disorders 

[32], in fact up-regulation of the interaction of calcyon 

and D1Rs has been found in schizophrenic patients [33].  

The activation of D1Rs is also related with regulation of 

electrochemical gradient through Na+K+-ATPase, which 

pumps the sodium out and the potassium into del cells. It’s 

been shown that the activation of D1Rs inhibit the Na+K+-

ATPase through PKA and PKC signaling pathways in 

striatum [34, 35] (Fig. 1), it’s also been shown that D1Rs 

are related with sodium homeostasis in the kidney [7, 36], 

where D1Rs might play an important role in nephropathy 

that we will briefly discuss later.  

 

D2-like Dopamine Receptors Expression and Signal 

Transduction Pathways 

 

The D2-like dopamine receptors family as we mentioned 

before, consists of D2, D3 and D4 DARs. For D2Rs subtype 

additionally there are 2 isoforms the D2-short and D2-long.  

The D2Rs share 75% homology in the transmembrane 

regions with D3Rs, while 53% identity with D4Rs [7]. The 

D2Rs are mainly expressed in striatum, external globus 

pallidus (GPe), core of Nacc, amygdala, cerebral cortex, 

hippocampus and pituitary. D2Rs mRNA also found in 

the temporal and enthorinal cortex and in the septal region 

as well in the VTA and SNc in the dopaminergic neurons 

[2, 7].  

The activation of this family of receptors typically 

leads to the inhibition of AC activity [37, 1], as well 

inhibition of PKA and DARPP-32 [38], however slight 

but complex differences in the functional response and 

activation of signaling pathways have been observed in 

receptors from this family, specially for D3Rs subtype 

(Fig. 2). For example it has been shown that D2Rs induces 

a strong inhibition of forskolin-induced cAMP 

accumulation in HEK-293 cells, while stimulation of 

D3Rs expressed in transfected HEK-293 cells showed 

either low or not inhibitory effect on AC activity [39, 40], 

however when D3Rs were expressed in a human 

neuroblastoma cell line, the effects were consistent with 

HEK-293 cells [41]. Discrepancies could be due to a 

differential expression of the AC isoforms, because D3Rs 

were able to inhibit the AC activity when were co-
transfected with the AC isoform V (ACV) but not with 

isoform VI [42]. Furthermore the ACV is widely 

expressed in dopaminergic-innervated brain regions 
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especially in the striatum [43, 44] and it has been 

suggested that this particular isoform also plays an 

important role in anxiety, depression, abuse drug 

withdrawal and L-3,4-dihydroxyphenylalanine L-DOPA 

induced dyskinesia (LID) [45-47].  

D2Rs also modulate G-protein-coupled inward 

rectifier potassium (GIRK) channels (Fig. 2), which 

mediate neuronal electrical response [48], through 

GPCRs coupled to Gαi/o protein and also varying the 

effects between the receptors of this family, the effect 

seems to be through the  subunits for D2Rs and D4Rs 

but not D3Rs [49]. Furthermore it has been shown in D2Rs 

knockout mice that D2Rs but not D3Rs couple to GIRK 

channel in the substantia nigra neurons [50].   

It’s been reported that D2Rs are also able to activate 

cell proliferation-related pathways such as Mitogen-

activated protein kinase (MAPK) signaling.  The 

activation of ERK1/2 has been also observed in a variety 

of cell lines, including in HEK-293 cells, COS-7 cells and 

C6 glioma cells, for this signaling pathway, D2Rs and 

D4Rs also display some differences in the intensity of 

ERK/MAPK activation compared to D3Rs using highly 

selective compounds  [51, 52]. On the other hand, the 

complex GPCRs-β-arrestin also activates ERK/MAPK 

once the receptor is internalized [53]. Recently it was 

demonstrated that the complex D2Rs--arrestin can 

activate ERK but this effect was not observed in D3Rs. 

However in the same conditions was found that ERK 

could be activated by D3Rs in HEK-293 and COS-7 cell 

lines only when Gαo is co-expressed but not Gαi, while 

D2Rs can mediate the ERK activation by both isoforms 

Gαi/o proteins and by D2R--arrestin complex (Fig. 2) 

[54]. MAPK signaling is activated by D4Rs and we 

recently reported that the D2-short-D4Rs form functional 

heteromer inducing phosphorylation of ERK1/2, 

interestingly, this interaction was disrupted when the 

polymorphic variant D4.7 was used, which has been 

associated ADHD [55]. 

Stimulation of D2-like receptors activates the Akt 

(thymoma viral proto-oncogene also knows as protein 

kinase B PKB) signaling [56, 57]. In vivo it has been 

shown activation of Akt in striatum and Nacc after the D2-

like agonist administration [56]. The effect of D3Rs has 

also been studied in vivo and in vitro. In vivo D3Rs knock 

out mice showed that these receptors participates in Akt 

phosphorylation [58]. In vitro D3Rs were able to increase 

PKC and PI3K activity [59]. Specific activation D3Rs 

enhance the Akt activity, which has been associated to 

increased dendritic arborization in dopaminergic neurons 

from mouse embryos [60]. The activation of Akt regulates 

the activity of the mammalian target of rapamycin 
(mTOR) and consecutive targets related with synaptic 

plasticity and cognitive processing [61]. In contrast the 

inactivation of the Akt (by protein phosphatase 2A PP2A), 

turns in the activation of the two isoforms of Glycogen 

synthase kinase-3 (GKS-3α/). The GSK-3 is a protein 

kinase abundantly expressed in brain and is involved in 

signal transduction cascades relevant to 

neurodevelopment [62] and also regulates proteasome 

degradation through β-catenin [63], which involved in 

neurodegenerative and psychiatric conditions such as HD, 

bipolar disorder and schizophrenia [64]. A recent study 

showed that D3Rs activates Akt, which in parallel 

activates, mTOR/p70S6/4E-BP1 signaling, probably 

mediated by phosphoinositide dependent kinase (PKD) 

and also causes the inactivation of GSK-3 by Akt-

dependent phosphorylation (Fig. 2), in medium-sized 

spiny neurons (MSNs) of striatum and Nacc [65], 

pathways that have been related with synaptic plasticity, 

cognitive process, long-term potentiation (LTP) and long-

term depression (LDP) [61]. D3Rs also induced the 

activation of phosphatidylinositol 3-kinase (PI3K) and the 

atypical protein kinase C (PKCζ) this effect is apparently 

mediated by γ subunit of G-proteins and activates 

MAPK signaling [51]. Signaling pathways might occur 

differently in specific brain regions and more important in 

pathological conditions. We will further discuss the 

specific changes of signal transduction pathways in 

neurotoxicity and neurodegenerative diseases.  

 

Dopamine and Dopamine Receptors in Neurotoxicity 

 

At physiological concentrations DA do not exhibits 

toxicity, however malfunction on DA release and/or 

metabolism could lead neurotoxicity. Mechanisms still 

unclear, but several evidences have shown that is caused 

by oxidative stress, neuroinflamation and apoptosis. For 

example, it have been shown that cortical, striatal, 

mesencephalic cells displayed toxicity by DA treatment 

[66-68]. DA-induced toxicity was initiated by the 

interaction with mitochondrial oxidative phosphorylation 

system causing inhibition of Complex I and decreasing 

ATP (Fig. 3A) [69].  In vitro studies demonstrated that the 

application of DA induces death of striatal cells [70]. DA 

also activates apoptotic signaling through mechanisms of 

oxidation [71] and necrotic cell death [72].  The effects of 

DA in toxicity were for long time associated with 

quinones and reactive oxygen species (ROS) caused by 

the metabolism of DA [73, 74, 75]. However recent 

evidences have shown that angiotensin receptors and the 

renin-angiotensin system (RAS) are also involved in 

neurotoxicity (Fig. 3B) [76] and the DA receptors could 

be participating in this modulation. In renal tissue was 

described that AT1Rs enhances D1Rs signaling [77]. In 

the brain, D1Rs antagonist partially blocked the 

neurotoxicity induced by DA [78]. Here we will briefly 

discuss the role of DA and DARs in RAS-induced 

neurotoxicity by oxidative stress and inflammatory 
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response but more detailed reviews have been published 

[74, 76, 79, 80]. 

 

 

 

 

 

 
 

Figure 3. Oxidative stress and Neurotoxicity. A. Shows the neurotoxic mechanisms of DA and neurotoxins used to mimic PD in the 

dopaminergic neuron. DA and the neurotoxins 6-hydroxydopmine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP), cause reactive species of oxygen (ROS) affecting the mitochondrial function and lipoperoxidation and cytoskeletal 

disorganization, which leads energy crisis and neuronal death. MPTP is first incorporated into the glial cells and metabolized to MPP+, 

this metabolite can cross the membrane through the DA transporter (DAT) to reach intracellular compartments in DAergic neuron, 

while 6-OHDA can directly cross through DAT. B. Neurotoxicity by renin-angiotensin system (RAS) activation and DA receptors. In 

RAS, angiotensinogen is converted to Angiotensin I (AI) by renin, AI is converted into Angiotensin II (AII) thought angiotensin 

converting enzyme (ACE), AII mediate their actions by angiotensin receptors AT1 and AT2Rs. AT1Rs activate the nicotidamine 

adenine dinucleotide phosphate oxidase complex (NADPH), which is the major source of ROS causing mitochondrial dysfunction and 

inflammatory response. The interaction AT1Rs with of D1 and D3Rs increases the DA response while D5Rs can regulate the AT1Rs by 

proteasome mechanisms. DA receptors are also related with immune response in T cells. 

 

 

Oxidative Stress 

 
The oxidative stress is the result of the imbalance between 

ROS such as peroxides and free radicals and the ability of 

the biological system to detoxify them. ROS causes lipid 

peroxidation, cytoskeleton disorganization and DNA 

defects phenomena that convey in cell death and in this 

particular scenario on DAergic neurons; the DA auto-

oxidation might increase ROS levels (Fig. 3A). In fact 

basal ROS levels are high in dopaminergic neurons. 

Indeed, normal enzymatic metabolism of DA induces the 

formation of hydrogen peroxide via monoamine oxidase 

activity [74]. It has been shown that DA oxidized 

metabolites inhibit the mitochondrial respiratory system 

by the inhibition of complex I and reduction of ATP 

causing energy crisis [69]. In fact neurotoxins used to 

experimentally model nigral degeneration in vitro as well 

as in vivo such as 6-hydroxydopamine (6-OHDA) and 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

cause neurodegeneration mediated by both ROS and 

mitochondrial inhibition (Fig. 3A) [74]. However ROS is 

involved in a complex process of neurotoxic pathways 

where RAS and the nicotidamine adenine dinucleotide 

phosphate oxidase complex (NADPH) are also 

participating. 

 

Renin-Angiotensin System 

 

RAS influence and modulate the sodium balance, 

extracellular fluid volume in the kidney and systemic 

vascular resistance, which was initially considered only as 

a circulating humoral system that regulates blood 

pressure, sodium and water homeostasis [76]. The 

precursor in this system is the glycoprotein 

angiotensinogen, which is converted by renin and 

Angiotensin-Converting Enzyme (ACE) into Angiotensin 

II (AII) (Fig. 3B). The AII mediates its actions via two 

GPCRs, the Angiotensin II type 1 Receptor (AT1Rs) and 

Angiotensin II type 2 Receptor (AT2Rs) [81, 82]. The 
AT1Rs receptors mediate most of the classical peripheral 

actions of AII such as the induction systemic 

vasoconstriction, which leads to elevated peripheral 
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resistance and ultimately increases blood pressure, while 

the function of the AT2Rs receptors remains more elusive 

and controversial. Although, it’s generally considered that 

the AII by AT2Rs mediated responses exerts effects 

directly opposed to those mediated by AT1Rs [83], 

thereby antagonize many of their effects. Interestingly in 

the last years, all components of the classical RAS have 

been identified in different brain areas and inside the 

blood-brain barrier, this system has been involved in 

vulnerability to neurodegenerative diseases like 

Alzheimer’s disease [84], MS [85] and PD [86] and it’s 

also been reported to participate in alterations of memory 

process [87]. Furthermore, it has been described that brain 

levels of AII are higher than circulating levels [88], and 

that the precursor protein angiotensinogen is mainly 

produced by astrocytes [89] with lower levels in neurons 

[90]. The components involved in the effects of AII in 

peripheral tissues such as NADPH-oxidase have also been 

found in neurons [91] and glial cells [92, 93]. It has been 

demonstrated the presence of different cytoplasmic and 

membrane subunits of the NADPH complex in 

mesencephalic DAergic neurons, astrocytes and microglia 

[94, 95, 96]. NADPH-oxidase complex is the most 

significant source of ROS other that mitochondria [97]. 

As a matter of fact, the neuronal loss is reduced by 

inhibitors of NADPH-oxidase, which suggests that 

NADPH activation and NADPH-derived ROS are 

involved in the AII-enhanced DAergic neuronal death 

[98, 95, 96]. Impaired RAS has been reported especially 

in aging diseases [99]. For example, several studies have 

reported the presence of RAS components in the basal 

ganglia, particularly in the nigro-striatal system [100, 101, 

102, 103]. The AT1Rs and AT2Rs were found to be 

expressed in primary mesencephalic cell cultures [104, 

95, 96], in nigral DAergic neurons and glial cells in both 

rodents and primates [105] and it was shown that AII 

induces DA release, which is blocked by AT1Rs 

antagonists [106]. The interaction between the RAS and 

the DAergic system is particularly interesting, previous 

evidences suggested that DA and angiotensin systems 

directly counter-regulate each other in renal cells [107] 

and that abnormal counter-regulatory interactions 

between dopamine and AII play an important role in renal 

degeneration and hypertension [108]. In renal proximal 

tubule cells, evidences suggest functional interaction 

between several types of DA receptors and AT1Rs 

receptors, as well as dimerization of AT1Rs-D1Rs 

inducing potentiation of D1Rs signaling [77]. For example 

AT1Rs-D3Rs aberrant interaction has been related with 

hypertension [109], the AT1Rs-D5Rs interaction was also 

showed, where DA induces activation ubiquitin-
proteasome pathway for AT1Rs through D5Rs [108] (Fig 

3B). In neurotoxin-induced parkinsonism with 6-OHDA 

and MPTP the role of RAS has been studied and 

evidences indicate that in these models up-regulated 

levels of AII, exacerbates the DAergic neuronal death 

mediated by AT1Rs [86]. Experimental data also support 

the involvement of brain RAS in dopaminergic 

degeneration [110, 111, 112]. It was demonstrated that 

AII increased the neurotoxic effect induced by low doses 

of 6-OHDA, and the treatment with inhibitors of ACE 

[113, 114, 112] or blockage of AT1Rs [98, 95, 96] resulted 

in a significant reduction of both the loss of dopaminergic 

neurons and the levels of protein oxidation and lipid 

peroxidation induced by the neurotoxins [115]. 

Furthermore antagonist of AT1Rs has been shown to be 

neuroprotective [116]. 

Interaction between AII and DA was suggested by 

early microdialysis studies, which showed that acute AII 

perfusion induces DA release and the effect was blocked 

by AT1Rs antagonists [106, 117]. The mechanism 

responsible for the AII induced DA release has not been 

completely clarified, although it’s been thought that 

involvement of D2 auto-receptors could be participating 

[106]. AT1Rs antagonists were capable to inhibit the LID 

(Fig. 3B), which is the major complication of L-DOPA 

treatment in PD [118]. An important number of studies in 

peripheral tissues, a direct counter-regulatory interaction 

between AT1Rs and D2Rs has been also demonstrated 

[119, 120]. Furthermore pro-renin receptors were found 

expressed in the nigral DAergic neurons and microglial 

cells in humans, monkeys and rats [121, 105]. Moreover, 

the pro-renin, AT1Rs and AT2Rs have been located 

intracellular compartments in DAergic neurons and glial 

cells [105]. These observations suggest the existence of 

an intracellular and intracrine RAS in dopaminergic 

neurons and functional interaction between DA receptors 

and AII receptors.    

Interestingly, chronic inhibition of RAS by the use of 

ACE inhibitors resulted in increased dopamine levels, 

probably as a compensatory effect [122,123], as a matter 

of fact, the ACE inhibitor peridonpril was beneficial in PD 

patients [123]. In addition chronic treatment with AT1Rs 

blockers such as candesartan do not change DA receptors 

expression, nor cause motor side effects and more 

importantly do not interfere with the beneficial effects of 

L-DOPA treatment [116], which is the most used therapy 

in PD. All these recent evidences together suggest that 

regulation of RAS and oxidative stress is a potential 

therapy in PD and LID.  

 

Neuroinflammation  

 

Neuroinflammation constitutes a fundamental process 

involved in the progression of several neurodegenerative 
disorders, such as PD, Alzheimer's disease, and MS. The 

neuroinflammation process includes activation of 

microglia, astrocytes and immune cells by inducing the 
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release of inflammatory mediators such as cytokines, 

chemokines, neurotransmitters and oxidative stress, 

leading to neural cell death [124, 125, 126]. As mentioned 

before, the oxidative stress mediated by AII is also 

inducing inflammation. It has been shown that up-

regulation of local AII, induces oxidative stress and 

exacerbates inflammation [127, 128, 80].  

In addition to that, inflammation mediated by the 

activation of the immune system is also related to 

neurodegenerative diseases. Lately DA has been related 

with regulation of immune system. DA is present in 

immune cells and it’s been shown that immune system 

cells can be regulated by DA receptors, which are 

expressed in the surface of T cells, B cells, neutrophils, 

eosinophils and monocytes [129]. Since immune cells 

have all the machinery molecules for DA synthesis, they 

are able to produce DA, which may act as 

autocrine/paracrine mediator on immune cells but also on 

neighboring cells [130, 131].  

The DA receptors expression was found in leukocyte 

subpopulations where in T lymphocytes and monocytes 

showed low expression, neutrophils and eosinophils, 

moderate expression and B lymphocytes and natural killer 

(NK) cells had higher and more consistent expression for 

example, D3Rs and D5Rs were consistently in most of 

immune cells, while D2Rs and D4Rs had more variable 

expression, and D1Rs was not found [132]. DA exhibits 

different affinity for their receptors and it’s been shown 

that depending of the concentration of DA is which 

receptor could be activated. For example activation of 

D2Rs and D3Rs induces polarization of the cluster of 

differentiation-4 (CD4+T) cells and D1Rs antagonist 

caused the same effect [133]. The activation of D5Rs 

increases the production of interleukins (IL) IL-23, 

cytokine that induces polarization of CD4+T cells, which 

has been related with inflammatory response [134]. On 

the other hand activation of D2Rs and D3Rs in normal 

resting T cells induces production of IL-10 and tumor 

necrosis factor-α (TNF-α) [135], while stimulation of 

D3Rs activates CD4+T cells inhibiting IL-4 and IL-10 

synthesis [136].  

Under pathological condition such as 

neurodegeneration or imbalance of homeostasis, 

inflammatory systems are active. Specialized patterns of 

adhesion of the cell surface during inflammation allow 

active T cells adhere to vessels and infiltrate to the brain, 

which contribute to neurodegenerative process [137, 138]. 

In fact it has been shown that D3Rs expression in CD4+T 

cells is crucial for the destruction of DA neurons of the 

SNc in PD models and the D3Rs knock out mice were 

resistant to MPTP [139], several evidences have shown 
that DA receptors expressed in immune cells play an 

important role in the autoimmune disorder MS. 

 

Alterations of Dopamine Receptors in 

Neurodegenerative Diseases 

 

Parkinson’s disease and DA receptors. 

 

PD is a neurodegenerative disorder characterized by the 

progressive loss of DAergic neurons of the SNc. The loss 

of dopamine has serious consequences in the balance of 

the pathways of the basal ganglia. According to the classic 

anatomical and functional basal ganglia models [140, 

141], the lost of dopamine cause imbalance in the motor 

networks that stimulate and/or inhibit the initiation of 

movements. There are two main pathways in the basal 

ganglia, the direct pathway, primary associated with D1-

like dopamine receptors [142], where activation of D1Rs 

increases the GABA release in striato-nigral terminals 

[143] whereas, the indirect pathway mainly express D2-

like dopamine receptors [142] and their activation inhibit 

GABA release in striato-pallidal terminals [144, 145]. 

The adequate balance between the direct (stimulatory) and 

indirect (inhibitory) networks facilitates the execution of 

movements [141]. In PD, the lost of DAergic control leads 

to a hyperactivity of the inhibitory pathway, which 

induces bradykinesia, the main symptom of this disorder 

[146]. In addition pathological conditions occur when 

long lasting cellular modifications, especially if those 

have important influence in the response to dopaminergic 

receptors activation. For example, it has been shown that 

PD causes also reorganization in the level of expression 

of DA receptors, phenomena that has been called 

supersensitivity of DA receptors. Early evidence showed 

that DA receptors changes during PD using the 

hemiparkinsonian rat model induced by 6-OHDA, where 

the GABAergic medium-sized spiny neurons, which are 

most prominent neuronal phenotype in the striatum 

(95%), showed increased mRNA coding for D2Rs in 

encephalin positive neurons which form the indirect 

pathway, while decreased mRNA coding for D1Rs were 

found in dynorphin/substance-P positive neurons that are 

related with the direct pathway of the basal ganglia [142], 

but not only the expression of the DA receptors is 

compromised in PD, it has been shown that also proteins 

and signaling transduction molecules are altered in this 

pathological condition probably as a compensatory effect 

to the supersensitivity [147]. The supersensitivity of 

DARs and signal molecules was further described in 

several structures of the basal ganglia such as in caudo-

putamen, striato-pallidal terminals and striato-nigral 

terminals [148-151]. 

The decreased expression of D1Rs in 

hemiparkinsonian animal models [152,151] could explain 
in part one of the most important symptoms of this 

disease, the bradykinesia [153]. The most widely used 

pharmacological treatment for PD is L-DOPA, 
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unfortunately chronic L-DOPA treatment causes several 

side effects, the most debilitating is the LID, which is 

characterized by the development of abnormal and 

involuntary movements. Alterations in D1Rs have been 

also related with this pathological condition. Despite the 

decreased expression of D1Rs, a increased signaling 

transduction pathway of D1Rs has been related with LID, 

no only in the striatum the input nuclei [25] but also in the 

SNr, the output nuclei of the basal ganglia, where the 

expression of the ACV is increased as well the cAMP in 

the striato-nigral terminals and these changes were 

directly related with the development of dyskinesia and 

increased GABA release [47]. As described before, D1Rs 

activates the AC, inducing cAMP accumulation and 

activation of PKA, which has several effectors and 

activation transcription factors, interestingly, it has been 

shown that effectors of PKA such as DARPP-32, ERK1/2 

and mTOR are altered during LID in hemiparkinsonian 

mouse model [25, 154, 155], Cdk5 also is increased in 

LID using MPTP primate parkinsonian models (Fig. 1) 

[148]. However, in agreement to our findings, recent 

evidence showed that ACV might be critical for the 

development of dyskinesia since the silencing specific 

ACV silencing in the striatum attenuates LID [156]. 

With very good agreement is known that D2Rs in the 

indirect pathway of the basal ganglia also changes during 

dopaminergic denervation in opposite way. D2Rs are up-

regulated in pallido-nigral neurons [142]. Increased levels 

of mRNA coding for D2Rs were early showed [142, 148] 

and increased binding for D2Rs has been associated with 

PD, however no differences where found in LID of 

primate parkinsonian model induced by MPTP [148]. 

Furthermore the LID develops gradually over time and 

D2Rs, despite dopamine denervation increases the mRNA 

levels and protein, D2Rs are not further elevated in LID 

neither in animal models nor postmortem studies, as a 

matter of fact in PD patients L-DOPA normalizes the up-

regulation [157, 158]. By then it was unclear whether or 

not the D3Rs subtype was participating in the 

supersentitivity by dopamine denervation, however their 

low expression in striatum made focus the attention in 

D2Rs [159, 160]. In the last decade, D3Rs attracted the 

attention, it’s important to mention that the helical 

transmembrane spanning region (TMS) of D2Rs and D3R 

receptors share 75-80% homology in amino-acid 

sequence and the TMS is directly involved in the 

orthosteric-binding site, main reason why targeting D3R 

has been challenging, however D3Rs-preferring 

compounds have been developed making possible the 

study of the role of D3Rs in PD.  

Despite the low abundance of D3Rs are expressed in 
the direct pathway [21], we previously reported functional 

response in the GABAergic striato-nigral terminals [161], 

where presynaptic D3Rs are modulated by the calcium 

calmodulin kinase IIα (CAMKIIα) [162]. The mRNA 

codifying to D3Rs remains unchanged during dopamine 

denervation [163]. However L-DOPA treatment induces 

a remarkable increase in dynorphin positive striatal 

neurons, which project to the SNr where D3Rs normally 

has moderate expression. Probably pathological 

conditions enhance their expression, according with that; 

recently it has been shown that D3Rs are up-regulated in 

caudo-putamen and SNc in Lewy Body disease and 

Parkinson disease Dementia [164]. Recently the LID has 

been related to interactions between D1-D3Rs where 

CAMKIIα might play an important role [165]. 

The role of D3Rs has been also studied in 

neurodegenerative process because it’s been shown their 

importance in neuroprotection. For example, the 

stimulation of D3Rs-preferring DA receptors agonist 7-

OH-DPAT promotes proliferation and possibly 

differentiation of dopaminergic neurons of the SNc in rats 

[166]. Chronic administration of 7-OH-DPAT was 

reported to restore the dopaminergic neurons in the 

nigrostriatal pathway in unilaterally lesioned rats treated 

with the neurotoxin 6-OHDA [167].  In addition to cell 

proliferation, the SNc neurons were reported to adopt a 

mature neuronal dopaminergic phenotype with 

projections arising from newly generated cells.  These 

effects might be related to a mitogenic response elicited 

via D3Rs activation of receptors expressed on 

mesencephalic dopaminergic neurons, which then may 

release neurotrophic factors.   

DA receptors still been the main target in PD through 

L-DOPA, however growing evidences have shown that 

DA receptors act differently in pathological conditions 

and some changes in the expression level and DA 

receptors interaction could lead a potential novel 

therapeutic targets. Interestingly several reports have 

shown that targeting D3Rs reduces LID, in addition to that 

D3Rs interact with D1Rs [168, 169] and enhances D1Rs 

stimulated GABA release in SNr [161], the functional 

effects and dynamic of this interaction seems to be 

mediated by CAMKIIα [162] and could be involved in 

LID and other pathological conditions. All these recent 

evidences about the modulation of D3Rs over the D1Rs 

might lead to novel approaches to treat PD and LID, 

however further studies are needed to examine potential 

side effects when targeting D3Rs in this pathological 

conditions since D3Rs exhibit a higher expression in other 

brain regions. 

 

Huntington disease and DA receptors. 

 

Huntington’s disease is a dominant inherited 
neurodegenerative disease that is characterized by chorea 

(involuntary jerk movements), cognitive deficits and 

psychiatric disturbances such as agitation irritability and 
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psychosis, symptoms progressively worsen until dead 

occurs. The cause is a mutation in the gene coding for 

hutingtin (htt) where it has been shown increased CAG 

repeats (glutamine), more than 35 repeats predispose to 

HD [170] and increased number of repeats is correlated 

with the HD onset [171]. The main histopathological 

feature is a profound lost of MSNs [172] in the striatum 

the input nuclei of the basal ganglia, however other 

structures are also affected such as, cerebral cortex, 

thalamus, hypothalamus and hippocampus but with less 

degree [173]. It has been suggested that the lost of MSNs 

neurons might be related to increased glutamatergic 

release from cortical and thalamic regions, which could 

be increasing the sensitivity of glutamate receptors [174, 

175], but also glutamate transporter 1 (GLT1) might play 

an important role because it has been shown that the 

expression of GLT1 is reduced in HD [176], since GLT1 

plays a critical role in glutamate removal by the 

astrocytes, excitotoxicity might occur. Alterations in DA 

transmission may also play a role, because it has been also 

shown that DA regulates the expression of GLT1 in 

striatal astrocytes [177], maybe the loss of the balance 

dopamine-glutamate contributes to the toxicity. 

DA plays an important role in the motor and cognitive 

functions and is also known that DA can regulate 

glutamatergic cortical neurons [178]. Early studies 

reported extensive atrophy of the SNc [179], postmortem 

studies showed also decreased expression of tyrosine 

hydroxylase (TH) the limiting enzyme in the synthesis of 

DA [180] suggesting impairments of DA transmission in 

HD. In addition the DA transporters also showed 

alterations in the striatum, a decreased binding for the 

membrane DA transporter (DAT) and for the vesicular 

monoamine transporter 2 (VMAT2) probably due to the 

decrease in the dopaminergic striatal innervation [181, 

182]. However other studies showed increased levels of 

DA in the nigro-striatal pathway in HD, according to that, 

the therapeutic agent to treat HD is tetrabenazine (TBZ). 

TBZ is a VMAT blocker and it’s been shown to be 

beneficial to treat HD, unfortunately TBZ is only helpful 

in the early stages of the disease and then becoming 

ineffective, interesting neurochemical studies have shown 

that increased DA occurs only in early stages of HD as 

well [183], where a significant decrease of striatal 

dopaminergic terminals was also reported [184]. 

The DA receptors also changes in HD, it has been 

shown that the binding for DARs is decreased in HD 

patients [185]. Similar results were showed in transgenic 

mice used as animal model of HD [186]. Positron 

emission tomography (PET) studies showed that DARs 

are decreased in striatal regions in both symptomatic and 
asymptomatic HD patients suggesting that DA alterations 

disrupts the expression level of the DARs in early stages 

[187]. Furthermore the DA loss in pre-symptomatic HD 

patients was correlated with cognitive impairs [188]. 

In R6/2 HD model which is a HD transgenic mouse that 

has an aggressive disease onset and progression that 

shows motor abnormalities [189] and learning 

impairments [190], important loss of striatal neurons met-

enkephalin positive were reported but not in substance-P 

positive [186], under the basal ganglia network, the met-

enkephalin positive neurons express preferentially the 

D2Rs and projects to GPe, while the substance-P positive 

neurons primary express D1Rs and projects to SNr [142, 

191]. Consistent with other neurodegenerative situations 

related to dopamine, the DA receptors expression change. 

All the D2Rs family showed significant loss in striatum, 

while in the D1Rs family D1Rs showed a decreased 

expression in but not D5Rs. However in similarity with 

PD, despite the decrease in D1Rs increased cAMP was 

found [186]. Changes of dopamine receptors expression 

and signaling molecules have also been reported in HD 

patients [192]. Interestingly robust elevations in the 

cAMP accumulation and transduction pathways occurs 

when a decreased expression of D1Rs in 

neurodegenerative process [193, 194, 151, 47]. As a 

matter of fact, D1Rs can also regulate the excitatory 

postsynaptic potentials (EPSCs) in layer V pyramidal 

neurons of the prefrontal cortex [178]. D1Rs has been also 

related with motor alterations by the abnormal regulation 

of GABA release in the SNr during LID [47], and 

abnormal burst patterns in the SNr were found in 140 

CAG knock in HD mouse model too, where increased 

bursting rates where found in the SNr compared with wild 

type littermates [195], suggesting that changes in the 

output nuclei could be involved in the motor alterations 

symptoms of HD.  

D1Rs could also play a role in progression of the 

disease. For example the activation of D1Rs receptors 

using agonists showed to accelerates the formation of htt 

nuclear aggregates, and it was found that the direct 

activation of AC using forskolin, mimic the effect and the 

response seems to be related with transcription factors, 

suggesting that the signal transduction pathway is 

involved in the aggregation of htt [42]. 

On the other hand GSK-3β also might participate in 

the neurodegenerative process of HD. As mentioned 

GSK-3β is a very promiscuous kinase that phosphorylate 

several substrates and is involved in many aspects of cell 

biology (Fig. 2), such as energy metabolism, microtubule 

stability and inflammation [196]. It’s been known that an 

important factor in HD is changes in energy metabolism, 

htt-expressing cells showed important reduction of 

adenosine triphosphate (ATP) [197]. Recent studies 
showed a 50% reduction of GSK-3β in the frontal cortex 

in brain from HD patients and this also occurred in R6/1 

mice model, suggesting this could be related with the 
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cognitive alterations [197]. It’s been shown that the GSK-

3β is increased in lipid rafts of knock-in HD mice brains 

and inhibitors of GSK-3β significantly reduced the 

neuronal dead in htt expressing neuronal culture cells 

[198], however since GSK-3 has an important number of 

substrates, the inhibition as a therapeutic approach has to 

be considered with caution, but a possibility could be 

pharmacological modulation mediated by receptors. 

Interestingly D2Rs and D3Rs knock-out mice display 

enhanced striatal Akt activation [199], and in HD 

transgenic model a profound loss of these receptors was 

found [186]. In addition, atypical antipsychotics used to 

manage psychiatric alterations in HD, have been shown to 

antagonize D2R/β-arrestin2 interactions more 

efficaciously than G-protein-dependent signaling (Fig. 2), 

whereas typical antipsychotics inhibit both pathways with 

similar efficacy [200]. GSK-3 also regulates the 

proteasomal degradation through -catenin (Fig. 2) and it 

has been shown that both typical and atypical 

antipsychotics induce alterations in the expression of -

catenin and GSK-3 in the striatum and prefrontal cortex 

[201].  Recently D3Rs have been involved in the 

inactivation of GSK-3β through Akt (Fig. 2), however in 

the best of our knowledge there is no studies linking D3Rs 

in HD related with this signaling pathway.  

Abnormalities in DA system might underlie some of 

the behavioral symptoms in HD, as a matter of fact HD 

patients treated with D2Rs agonist prevented the chorea 

but not the cognition impairments [202], as mentioned 

before hyperdopaminergic tone has been shown in early 

stages of HD, and TZB alleviates motor deficits as well as 

antagonist of D1Rs were able to prevent MSNs dead in a 

HD mouse model [203].  

The development of novel and selective DA receptors 

compounds open a new field of study in HD, probably 

other potential therapies to treat motor alterations and 

psychiatric conditions in HD, as well modulate the 

aggregates of htt as previously showed. Further studies are 

needed to fully understand the role of the specific DA 

receptors subtypes in HD, which might lead to novel 

therapeutic approaches. 

 

Multiple Sclerosis and DA receptors. 

 

MS is a complex disease that affects the brain and spinal 

cord, resulting in loss of muscle control, vision, balance, 

and sensation of numbness. In MS, the brain and spinal 

cord are damaged by the immune system, reason why this 

condition is called an autoimmune disease. MS is 

characterized by inflammation, demyelination and 

neurodegeneration, causes disability in both young and 

older populations.  

Several autoimmune processes are mediated by 

myelin-specific CD4+ T helper (Th), which are cells 

capable to cross the blood-brain barrier and cause damage 

[204]. It’s been known that Th contributes to MS secreting 

pro-inflammatory cytokines, such as TNFα and IFN-γ 

[205]. In addition, disruption of the blood-brain barrier 

allows the entry of B cells and T-cell dependent B cell 

activation results in neural damage [206]. 

DA and generally all catecholamines has been 

involved with MS. However recently, growing evidences 

shown that DA receptors are closely related with immune 

system and abnormalities of DA receptors and their 

function may participate in MS. In fact DA levels are 

increased in striatum [207].  

The role of DARs has been also studied, decreased D5Rs 

could be related with the onset of MS, in peripheral blood 

mononuclear cells D5Rs was found to be decreased in 

non-treated MS patients [208], while in treated patients 

with (IFN)-γ, D5Rs were found increased. Interestingly 

the treatment with (IFN)-γ induced enhanced tyrosine 

hydroxylase (TH) expression too and DA synthesis [209]. 

Furthermore dendritic cells, which are antigen-presenting 

cells, also synthesize DA that is released in autocrine 

manner and can stimulate D5Rs inducing production of 

IL-23, which causes polarization of CD4+ T cells toward 

the inflammatory phenotype [134]. DA increases 

production of TNFα via D1, D5 and D3Rs and the 

production of IL-10 through D2, D1 and D5Rs [135]. The 

role of DA and their receptors still unclear but several 

studies has shown that the changes in DA function and 

DA release are co-related with inflammation in 

autoimmune diseases. DA exhibits different affinities for 

the five DA receptors, showing higher affinity for D3, D4 

and D5Rs and lower D2 and D1Rs [210]. When lower 

levels of DA are released likely the main activation is 

D3Rs in T cells, which could lead to T cell migration, 

while higher levels of DA could activate D5Rs instead and 

as a consequence inhibition of the T cell function [129]. 

Despite the potential role of DA in MS, a pilot study in 

MS patients treated with D2Rs agonist after a year of 

treatment no changes were observed in the progression of 

this disease [211]. It’s important to mention that other 

catecholamines are also participating such as -adrenergic 

receptors (AR) and balance between DA and -AR 

inhibitory and stimulatory effects play an important role 

in the lymphocytes activation. As the matter of fact in MS 

patients the dysregulation of -AR and DA receptors 

might alter the balance of these catecholamines inducing 

dysfunctional events in the lymphocytes [206]. 

Although in the clinical experience the DA 

compounds showed very limited therapeutic benefits the 

recent research points DA as a potential target due to the 

ample expression of DA receptors in the immune system 
[208]. The understanding of the role of DA receptors in 

immune system could lead to novel pharmacological 
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strategies to modulate the immune response by dopamine 

in MS. 

 

Conclusion 
 

The DA neurotransmission system and DA receptors play 

an important role in neurotoxicity and neurodegeneration. 

DA receptors are susceptible to change under pathological 

conditions and rearrangements of intracellular signal 

pathways might occur that worsen the symptoms in aging 

diseases or neurodegenerative process. The better 

understanding of the changes that occur in the DA 

receptors and their functional responses during 

pathological conditions is crucial for the development of 

novel and efficacious therapeutic approaches in 

neurodegeneration, neurotoxicity and neuroinflammation. 
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