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ABSTRACT: Muscle denervation at the neuromuscular junction (NMJ) is thought to be a contributing 

factor in age-related muscle weakness. Therefore, understanding the mechanisms that modulate NMJ 

innervation is a key to developing therapies to combat age-related muscle weakness affecting the elderly. 

Two mouse models, one lacking the Cu/Zn superoxide dismutase (SOD1) gene and another harboring the 

transgenic mutant human SOD1 gene, display progressive changes at the NMJ, including muscle endplate 

fragmentation, nerve terminal sprouting, and denervation. These changes at the NMJ share many of the 

common features observed in the NMJs of aged mice. In this review, research findings demonstrating the 

effects of PGC-1α, IGF-1, GDNF, MyoD, myogenin, and miR-206 on NMJ innervation patterns in the G93A 

SOD1 mice will be highlighted in the context of age-related muscle denervation.  
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Many retrospective and prospective studies have shown 

that age-related muscle weakness (dynapenia) is 

associated with decreased muscle function and increased 

risk for mortality in the elderly [1–4]. Dynapenia is a main 

cause of muscular instability, contributing to falls and 

subsequent fractures, ultimately impacting quality of life 

[5,6]. Both diet and exercise are practical interventions 

demonstrated to delay many devastating and debilitating 

age-associated pathologies including type 2 diabetes, 

cardiovascular disease, cerebrovascular disease, cognitive 

dysfunction, and even some cancers [7–14]. However, 

physical activity is the most effective means for 

increasing the quality of life in the elderly [15,16] and gait 

speed is a strong predictor of survival rate in elderly 

subjects [17]. Dynapenia represents a dramatic and 

inevitable decline in skeletal muscle function, which 
inevitably poses challenges for implementing a physical 

activity program to benefit the quality of life in the 

elderly.  It is thought that complex degeneration of the 

neuromuscular system contributes to dynapenia [18–22].  

It has been proposed that age-associated changes occur 

in both the nervous system and the muscular system, 

leading to an overall loss in muscular strength [23]. In 

humans, a significant decrease in the number of motor 

units and muscle strength is observed with aging [24]. 

Studies using rodent models of aging show extensive 

alteration in NMJ morphology. Findings from the Balice-

Gordon lab demonstrated significant instability in the 

NMJ of aged rats using a longitudinal visualization 

technique for monitoring the NMJ in vivo [25]. 

Examination of 12- to 20-month-old rats  demonstrated a 

progressive loss of synaptic areas and fragmentation of 

muscle endplates, leading to significant losses in pre- and 

post-synaptic structures over time [26]. Subsequent 
studies in mice have shown similar NMJ denervation with 

aging [27–29]. 
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Muscle denervation in a mouse model of oxidative 

stress 
 

One of the leading theories on mechanisms underlying 

age-related muscle denervation points to oxidative stress 

[30–32]. Reactive oxygen species (ROS) are natural 

byproducts of mitochondrial activity involved in 

respiration and energy production. ROS-mediated 

oxidative damages to DNAs, proteins, and lipids are 

normally kept in check by antioxidants. However, 

excessive ROS production can overwhelm the antioxidant 

defense, leading to increased oxidative damage of cellular 

machinery.  

     Cu/Zn superoxide dismutase (SOD1) is a cytoplasmic 

antioxidant enzyme involved in the scavenging of 

superoxide free radicals. Mice lacking SOD1 enzyme 

(SOD1-/- mice) show increased oxidative damages to 

proteins, lipids, and DNAs [33]. In addition, these mice 

display progressive muscle denervation, weakness, and 

loss; changes seen despite the absence of spinal cord 

motor neuron and ventral root axon loss [34–38]. NMJ 

denervation and sprouting are observed in these mice 

between one and four months of age and precedes muscle 

loss [35,36], which is observed between three and four 

months of age [33]. Furthermore, muscle denervation and 

loss are greater in the gastrocnemius and tiabialis anterior 

compared to the soleus [33,35,36].  

     The tibialis anterior and gastrocnemius muscles have 

higher proportion of fast muscle fibers, whereas the soleus 

muscle has higher proportion of slow muscle fibers. 

Therefore, fast muscle seems to be more vulnerable to 

muscle denervation and loss in these animals. These 

changes are similar to what has been shown in human 

aging studies. It has been shown that type II (fast) muscle 

fibers are more affected than type I (slow) fibers during 

age-related muscle deterioration and loss in elderly adults 

[23,39]. A recent study by Chai and colleagues in older 

mice also showed age-related muscle denervation that was 

more pronounced in fast muscles [27]. However, findings 

by Valdez and colleagues did not demonstrate this fiber 

type-dependent sensitivity to age-related muscle 

denervation in older mice [28]. It is worth noting that their 

data indicate that NMJs in the soleus muscle as a whole 

seem to be less affected than NMJs in gastrocnemius, 

extensor digitorum longus (EDL), and tibialis anterior 

muscles [28] .  

 

Mutant SOD1 transgenic mouse model of fALS 

 

Amyotrophic lateral sclerosis (ALS) is a progressive 

neurodegenerative disorder affecting the upper and lower 
motor neurons. One of the first identified gene mutations 

associated with familial ALS (fALS) are those in the 

SOD1 gene [40]. This discovery led to the development 

of the G93A mutant SOD1 transgenic mouse model for 

fALS (G93A SOD1 mice) [41]. 

     G93A SOD1 mice recapitulate many of the 

pathological hallmarks of ALS, such as progressive 

muscle weakness and denervation, motor neuron loss and 

paralysis [42–44]. It has been demonstrated that muscle 

denervation is observed as early as 47 days of age in these 

mice [45–48] and precedes both motor neuron loss [42,43] 

and muscle atrophy [49,50]. These characteristics are 

similar to those observed in the rodent models of aging 

[27,28] as well as in SOD1-/- mice [35,36,51]. In addition, 

these mice display preferential denervation of fast-twitch 

muscles [52–55]. It has been suggested that both fast 

muscle and motor units are selectively vulnerable to the 

disease process in ALS patients [56,57]. This increased 

sensitivity to muscle denervation in fast muscles has also 

been demonstrated in aged mice [27,28] and SOD1-/- 

mice [35,36].  

     A potential mechanism mediating muscle denervation 

in the G93A SOD1 mice may be increased oxidative stress 

resulting from transgenic expression of mutant SOD1 

gene. Examination of the gastrocnemius muscle showed 

increases in malondialdehyde and protein carbonyl levels 

which are indicative of oxidative damage to lipids and 

proteins, respectively [58].  In a related study, Muller and 

colleagues compared ROS production in response to 

sciatic nerve transection in muscles of three different 

models of mice that show muscle denervation: SOD1-/-, 

G93A SOD1, and aged mice [59]. Examination of 

gastrocnemius and tibialis anterior muscles following 

nerve injury showed varying levels of increase in ROS. 

The authors reported three-fold increase in ROS in 28- to 

32-month-old wildtype mice compared to 10-month-old 

wildtype mice (aged vs. young wildtype mice) [59]. In 

SOD1-/- mice, ROS production is increased by 30% and 

100% in 5-month-old and 20-month-old mice, 

respectively, compared with age-matched wildtype mice 

[59]. Lastly, G93A SOD1 mice showed 10-fold increase 

in ROS generation compared to age-matched wildtype 

mice [59].  

     These findings suggest that many features of the 

muscle denervation observed in the G93A SOD1 mice are 

similar to features of muscle denervation observed in aged 

mice and SOD1-/- mice, and may be mediated by 

oxidative stress. Since G93A SOD1 mice represent the 

most frequently studied fALS mouse model, there have 

been a large number of studies examining the 

physiological mechanisms modulating the disease 

progression in these mice. In the following sections, 

research findings demonstrating the effects of PGC-1α, 

IGF-1, GDNF, MyoD, myogenin, and miR-206 on NMJ 
innervation patterns in the G93A SOD1 mice will be 

highlighted in the context of age-related muscle 

denervation. 
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Role of PGC-1α as a mediator of exercise and caloric 

restriction effects in NMJ maintenance  
  

The effect of voluntary exercise and caloric restriction 

(CR) on age-related muscle denervation has been directly 

examined by Valdez and colleagues [29]. In their study, 

they examined mice that were either subjected to 20 

months of caloric restriction (from 4 to 24 months of age) 

or 1 month of voluntary wheel running (from 21 to 22 

months of age) [29]. Their findings show that many of the 

age-related changes (e.g., fragmentation, denervation, and 

sprouting) in NMJs are reduced in response to the exercise 

and diet regimen used in the study [29].  

    Although the effects of exercise and CR on the disease 

progression in G93A SOD1 have been examined, the 

effects on muscle denervation phenotype have not been 

directly examined to date.  A number of studies in G93A 

SOD1 mice have examined the role of physical activity on 

the survival rate and neuroprotection of spinal cord motor 

neurons. Kaspar and colleagues showed that wheel 

running exercise increases spinal cord motor neuron 

survival and improves Rota-rod performance [60]. 

Treadmill running in these mice have also shown benefits 

on motor neuron survival and Rota-rod performance [61].  

However, additional studies seem to suggest that the 

intensity of the exercise may be an important factor in 

moderating the disease progression; moderate exercise 

may impart benefit while high intensity exercise hastens 

disease progression in G93A SOD1 mice [61,62]. On the 

other hand, caloric restriction studies to date in G93A 

SOD1 mice have only shown a detrimental effect on 

disease progression and motor function [63–65].  

     Peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PGC-1α) is a transcription co-

activator involved in both mitochondrial biogenesis and 

oxidative metabolism in skeletal muscle [66]. PGC1-α 

overexpression in muscle increases mitochondrial 

biogenesis and enhancement of muscle oxidative 

phenotype [67]. Research findings suggest that the effects 

of caloric restriction may be in part mediated by PGC-1α 

[68] and AMP-activated protein kinase α (AMPK) [69]. 

The critical role of AMPK and PGC-1α in mediating 

exercise effects has also been demonstrated by Narkar and 

colleagues, where they showed that pharmacological 

activation of AMPK and PGC-1α imparts an endurance 

phenotype in sedentary mice [70].  

     Two of the currently approved antidiabetic drugs, 

metoformin and pioglitzone, have been shown to activate 

AMPK and PGC-1α, respectively [71–74]. Studies 

examining the effect of metformin demonstrated that the 

treatment using multiple doses in drinking water 
(0.5mg/ml, 2mg/ml, and 5mg/ml) did not improve the 

survival rate or disease progresssion in G93A SOD1 mice, 

but did show a moderate increase in the motor unit 

number in EDL of male mice [75]. On the other hand, 

G93A SOD1 mice treated with pioglitzone, a PPAR-

agonist, showed improved motor function, muscle fiber 

integrity, and motor neuron survival [76]. This finding has 

been confirmed using a genetic approach; transgenic 

overexpression of PGC-1α improved Rota-rod 

performance and increased motor neuron survival in 

G93A SOD1 mice [77,78]. Interestingly, despite the 

motor function improvement in these mice, Liang and 

colleagues did not observe an increase in AChRα subunit 

expression [78]. 

     This result is surprising since regulation of NMJ genes 

and AChR clustering by PGC-1α has been demonstrated 

using muscle-specific PGC-1α transgenic and knockout 

mice [79]. Furthermore, findings suggest that muscle 

activity or state of innervation may be a better predictor 

of the PGC-1α level. Active older adults (70±5 years) who 

maintained greater muscle strength than sedentary older 

individuals (63±10 years) displayed much higher PGC-1α 

levels in their muscle, comparable to levels observed in 

the muscle of young individuals (22±2 years) [80]. In rats, 

chronic unilateral sciatic or peroneal nerve denervation 

reduces the level of PGC-1α by 70% in ipsilateral muscles 

[81]. Experimental findings showing decreased PGC-1α 

in the muscles of both elderly humans and aged rats may 

reflect age-related muscle denervation [82,83]. 

     Despite these findings, studies targeting the transgenic 

PGC-1α expression to skeletal muscle in the G93A SOD1 

mice suggest that PGC-1α is not sufficient for halting 

muscle denervation in these mice. A study by Da Cruz and 

colleagues demonstrated that transgenic overexpression 

of PGC-1α in the muscle of G37R mutant SOD1 mice did 

not modulate NMJ denervation in these mice, even though 

PGC-1α overexpression in the muscle increased 

mitochondrial biogenesis, AChR clustering, and 

improved muscle endurance [84]. A similar study in 

G93A SOD1 mice resulted in enhanced oxidative 

phenotype in the skeletal muscle, but did not improve 

Rota-rod performance or muscle strength [85]. 

      

Role of IGF-1 in NMJ maintenance  
 

Insulin-like growth factor-1 (IGF-1) is a neuroprotective 

hormone that has also shown to mediate exercise effect on 

neurogenesis and neural activity [86–88]. Kaspar and 

colleagues examined the effect of IGF-1’s neurotrophic 

property in ALS using the G93A SOD1 mice. They 

utilized retrograde uptake property of adeno-associated 

virus (AAV) at presynaptic terminals to deliver IGF-1 to 

the motor neurons via intramuscular injections of AAV-

IGF-1 [89]. Intramuscular injections of AAV-IGF-1 in 
adult G93A SOD1 improved both the muscle function and 

motor neuron survival [89]. These identical changes were 

also observed in exercised G93A SOD1 mice [60]. 
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Intramuscular injections of AAV-IGF-1 increased IGF-1 

expression in both the muscle and spinal cord motor 

neurons [89]. When IGF-1 expression was restricted to the 

muscle using a lentiviral vector that was not retrogradely 

transported to the spinal cord, Kaspar and colleagues 

observed in these mice a moderate but statistically 

significant increase in survival that was less than that for 

AAV-IGF-1 treatment [89].  

     A number of studies have addressed the question of 

central versus local action of IGF-1 on the survival of 

G93A SOD1 mice. It has been shown that continuous 

intrathecal infusion of IGF-1 into the spinal cord is 

neuroprotective and improves survival rate [90]. 

However, in another study where the IGF-1 level in the 

spinal cord was elevated via intrathecal delivery of IGF-

1:tetanus toxin fragment C fusion protein, there was no 

effect on the survival rate [91]. Similarly, spinal cord-

targeted transgenic expression of IGF-1 in G93A SOD1 

mice did not improve motor neuron degeneration and 

muscle function decline [92].  

      It has been demonstrated that muscle-targeted 

expression of IGF-1 improves muscle function and 

reduces age-related muscle atrophy [93], and enhances 

nerve branching at NMJ and increases muscle endplate 

size in older mice (22-24 month old), resulting in 

measures that are similar to those observed in young mice 

(2-6 month old) [94]. Muscle expression of IGF-1 also 

enhances nerve regeneration following nerve injury in 

mice, as demonstrated by increased markers of muscle 

repair and nerve regeneration as well as accelerated 

recovery of nerve conduction in the damaged nerve [95]. 

      Dobrowolny and colleagues directly examined the 

effect of muscle-directed expression of muscle isoform of 

IGF-1 (mIGF-1) on NMJ changes in G93A mutant SOD1 

mice [96]. The findings demonstrate that skeletal muscle 

expression of mIGF-1 extends survival and protects motor 

neurons in G93A SOD1 mice [96]. In addition, mIGF-1 

expression increased agrin expression and preserved 

AChR clustering [96]. However, in another study, 

muscle-directed expression of IGF-1 in G93A SOD1 mice 

did not improve motor neuron survival or motor function 

[92].   

     These equivocal findings are surprising given the fact 

that positive effects of localized IGF-1 on nerve injury-

mediated muscle denervation have been demonstrated. 

Caroni and colleagues showed that intramuscular 

injections of IGF-1 increased GAP-43, which suggests 

axon growth, but did not affect acetylcholine receptor 

(AChR) clustering [97]. In a follow-up study, the authors 

blocked the IGF-1 activity in the muscle using IGF-1 

binding proteins [98]. In this study, they induced paralysis 
using Botulinum toxin A to induce nerve sprouting. 

Interference with IGF-1 action through subcutaneous 

delivery of IGF-BP4 to the paralyzed muscle using 

osmotic minipump prevents nerve sprouting, suggesting 

that IGF-1 mediates nerve sprouting at the NMJ [98]. 

However, a double-blind placebo-controlled phase III 

randomized clinical trial has proven that a two-year 

treatment of twice-daily subcutaneous injections of IGF-

1 is clinically ineffective in ALS patients [99]. 

 

Role of GDNF in NMJ maintenance 

 

Glial cell line-derived neurotrophic factor (GDNF) is also 

a neurotrophic factor found to have a strong pro-survival 

effect on motor neurons [100]. GDNF mRNA is 

detectable in the central nervous system as well as in the 

peripheral organs, including skeletal muscle [101–103]. 

The role of GDNF in NMJ innervation was demonstrated 

by studies showing that skeletal muscle-targeted 

expression of GDNF in transgenic mice increases the 

number of muscle of endplates and multiply-innervated 

NMJs [104,105]. However, when subcutaneously injected 

the exogenous GDNF’s ability to maintain synaptic 

remodeling in mice is observed only if chronic exposure 

is initiated within the developmentally-critical postnatal 

time window between postnatal day zero and eight [106].  

    It has been shown that the GDNF level in the postnatal 

muscle decreases with age. In rats, the GDNF mRNA 

level in the skeletal muscle is reduced three months after 

birth; however, constant high levels of GDNF protein are 

detected in postnatal muscle [107]. Examination of 

muscle samples from human adults 20-43 years of age 

also demonstrated the presence of GDNF in the skeletal 

muscle, and its expression in the vicinity of 

neuromuscular junctions as indicated by co-localization 

of GDNF and α-bungarotoxin staining [103]. Research 

evidence from adult rats suggests that GDNF activity in 

muscle may modulate NMJ morphology. It has been 

shown that when rats are subjected to two weeks of 

involuntary exercise, the GDNF level is increased in 

soleus but decreased in EDL [108]. Examination of 

muscle endplates revealed a decrease in the total area per 

endplate in EDL while an increase was observed in the 

soleus [108]. This correlation between GDNF levels and 

muscle endplate sizes has been further documented in 

subsequent studies [109,110]. 

     In G93A SOD1 mice, intramuscular injections of AAV 

expressing GDNF in adult mice improved Rota-rod 

performance and spinal cord motor neuron survival [111]. 

The effect observed in this study is likely mediated by 

both central and local mechanisms, since GDNF levels 

were upregulated in both the muscle and spinal cord 

[111]. Although immunoreactivity for transgene-derived 

GDNF was shown to be highly co-localized with α-
bungarotoxin staining, the effect on muscle denervation 

was not directly assessed in this study [111].  
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     In order to directly test the role of central versus local 

effect of GDNF on the neuropathology, Li and colleagues 

transgenically targeted GDNF expression to either 

neurons or myofibers in G93A SOD1 mice [112]. Direct 

measures of muscle denervation demonstrated that 

transgenic GDNF expression targeted to the muscle 

increased the number of innervated NMJs, whereas 

neuronally targeted transgenic GDNF expression did not 

produce such an effect [112]. Therefore, muscle-directed 

transgenic expression of GDNF is important for NMJ 

maintenance in these mice. 

     To determine the therapeutic potential of GDNF 

treatment, Suzuki and colleagues have used human stem 

cells to examine the effect of chronic GDNF delivered to 

either muscle or spinal cord on the muscle denervation 

phenotype in the adult rat model of fALS (G93 SOD1 

rats) [113,114]. In one study, GDNF-secreting human 

neural progenitor cells were intrathecally transplanted 

into the spinal cord at 70 days of age. Although the 

transplantation imparted local protection on spinal cord 

motor neurons, there was no change in the number of 

innervated NMJs [114]. In another study, the group 

implanted human mesenchymal stem cells engineered to 

express GDNF (hMSC-GDNF) intramuscularly at 80 

days age, with a goal of delivering GDNF to NMJs 

locally. Although their findings showed that 

transplantations of either hMSC-GDNF or hMSC 

expressing GFP increased the number of innervated 

NMJs, only the hMSC-GDNF transplant showed 

statistically significant increase when compared to non-

transplanted G93A SOD1 rats [113]. These results 

suggest that in addition to the GDNF effect, the 

transplanted hMSCs themselves are able to modulate 

muscle denervation by providing additional trophic 

support to the muscle and NMJs.  

 

Role of MyoD, myogenin, and miR-206 in NMJ 

maintenance 

 

The findings from various growth factor studies using the 

G93A SOD1 mice and G93A SOD1 rats suggest that 

muscle may indeed play a role in mediating muscle 

denervation process. MyoD and its related basic helix-

loop-helix (Myf5, myogenin, and MRF4) are muscle 

specific regulatory factors. During development, these 

myogenic regulatory factors have critical roles in skeletal 

muscle development [115–117]; For example, MyoD is 

involved in determining skeletal muscle lineage [118], 

whereas myogenin is important for muscle differentiation 

[119,120]. In adult muscle, myogenin is expressed 

preferentially in slow muscle (composed of 
predominantly type I muscle fibers) [121–123] and MyoD 

is enriched in fast muscle (composed of predominantly 

type II muscle fibers) [121,123]. 

     A number of studies suggest that fast muscle is more 

sensitive to age-related muscle denervation process as 

compared to slow muscle [27,39]. Similarly, it has also 

been suggested that the fast muscles and motor units in 

both ALS patients and mouse models are preferentially 

denervated [52,54–57]. It has been shown that expression 

of either exogenous MyoD or myogenin in skeletal 

muscle can shift the muscle phenotype. MyoD expression 

has been shown to impart type IIx muscle fiber phenotype 

under denervation condition [124], while myogenin 

expression has been shown to enhance the oxidative 

phenotype in muscle fibers [122,123].  

     Recently, my colleagues and I used adenovirus 

constructs to express either human MyoD or myogenin in 

muscles of adult G93A SOD1 mice to evaluate their 

effects on disease progression [85]. Adenovirus 

expressing either human MyoD, human myogenin, or 

GFP was injected into hind limb muscles bilaterally at 30 

days of age. Treatment effects on the NMJ innervation 

patterns were examined using stereology on 

gastrocnemius samples taken at 100 days of age. Our 

findings show that postnatal muscle expression of MyoD 

exacerbates both muscle denervation and Rota-rod 

performance decline, while postnatal muscle expression 

of myogenin attenuates muscle denervation and improves 

Rota-rod performance when compared to the virus control 

G93A SOD1 group [85]. Therefore, MyoD and myogenin 

differentially modulate muscle denervation in these mice. 

     It has been shown that myogenic transcription factors 

can regulate the expression of microRNAs (miRs) in 

muscle [125,126]. miRs are short non-coding mRNAs 

that are post-transcriptional regulators of gene expression. 

Of the many miRs that have been identified in the muscle, 

it has been shown that miR-206 can be regulated by both 

MyoD and myogenin [125,127–129]. miR-206 shows 

skeletal muscle-specific expression and is thought to 

regulate many aspects of skeletal muscle function, 

including NMJ formation [126]. Although its expression 

has been reported to be enriched in slow muscle 

[127,130], its upregulation following muscle denervation 

is enhanced in fast muscles [127].  Although NMJ 

development and innervation is unaffected in miR-206 

knockout mice, NMJ reinnervation is delayed following 

nerve transection or injury [127]. In the absence of miR-

206, muscle denervation is exacerbated in the skeletal 

muscle of G93A SOD1 mice [127]. Upon further 

investigation, the authors determined that the effect in 

their study is in part mediated via repression of histone 

deacetylase 4 (HDAC4) translation by miR-206. The 

HDAC4 protein level was increased in miR-206 knockout 

mice, and when HDAC4 is selectively knocked out in the 
skeletal muscle of wildtype mice, NMJ reinnervation 

following nerve injury is enhanced [127]. However, the 
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effect of HDAC4 knockout on muscle denervation in 

G93A SOD1 mice was not directly investigated.  

 

Conclusion 

 

The similarities in muscle denervation profiles between 

SOD1-/-, G93A SOD1, and aged mice suggest that both 

SOD1-/- and G93A SOD1 mice represent an accelerated 

muscle-aging model for oxidative stress-mediated muscle 

denervation. Much of the past studies in G93A SOD1 

mice have focused on neuroprotective effects on spinal 

cord motor neurons. However, investigation of effects on 

muscle denervation in G93A SOD1 increasingly provides 

valuable insight into potential mechanisms of progressive 

muscle denervation. Recent findings have highlighted 

muscle-specific factors such as MyoD, myogenin, and 

miR-206 as mediators of muscle denervation. 

Furthermore, evidence of muscle-targeted genetic 

manipulations demonstrating greater impact on muscle 

denervation highlights the importance of the muscle in 

NMJ innervation regulation. 
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