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ABSTRACT: Reversible regulation of proteins by reactive oxygen species (ROS) is an important mechanism 

of neuronal plasticity. In particular, ROS have been shown to act as modulatory molecules of ion channels—

which are key to neuronal excitability—in several physiological processes. However ROS are also 

fundamental contributors to aging vulnerability. When the level of excess ROS increases in the cell during 

aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all 

culminating in significant cell injury. From this arose the idea that oxidation of ion channels by ROS is one 

of the culprits for neuronal aging. Aging-dependent oxidative modification of voltage-gated potassium (K+) 

channels was initially demonstrated in the nematode Caenorhabditis elegans and more recently in the 

mammalian brain. Specifically, oxidation of the delayed rectifier KCNB1 (Kv2.1) and of Ca2+- and voltage 

sensitive K+ channels have been established suggesting that their redox sensitivity contributes to altered 

excitability, progression of healthy aging and of neurodegenerative disease. Here I discuss the implications 

that oxidation of K+ channels by ROS may have for normal aging, as well as for neurodegenerative disease.  
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ROS are highly reactive molecules that are formed as a 

natural by-product of the metabolism of oxygen. ROS can 

react with proteins, DNA, cell membranes and other 

molecules as well as generate more reactive radicals [1]. 

As aging advances, the redox environment of the cell 

becomes altered in favor of oxidation by an increased 

production of ROS and/or a decrease in antioxidant 

defenses. Unchecked ROS present in aging cells can cause 

considerable damage by oxidizing proteins, inducing 

DNA mutations, mitochondrial dysfunction and lipid 

peroxidation [2, 3]. From these facts arose the idea that K+ 

channels, which are essential to excitable and non-

excitable cells, could provide a common target for ROS 

[2, 4]. In fact it had been known for a long time that K+ 

channels are implicated in aging and neurodegenerative 

conditions characterized by high levels of ROS such as 

Alzheimer’s and Parkinson’s disease [5-13].  Moreover, 

many types of K+ channels including voltage-gated (Kv) 

[14-25], 2-P domains [26], calcium-activated (KCa) [27] 

and G-protein coupled inwardly rectifying (GIRK) [28] 

K+ channels  can be modified by oxidizing agents in vivo 

and in vitro. However, until a few years ago, the 

physiological significance of the interactions of ROS with 

K+ channels was unresolved, with the exception of a few 

studies which had suggested a potential role for oxidation 

of K+ channels in neuronal hypoxia [22, 29]. The 

breakthrough came recently, when we showed that in C. 

elegans, not only K+ channels undergo age-dependent 
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oxidation but as a result of this, they impair neuronal 

function. In this mini-review I take stock of the field and 

report on the progresses achieved in these recent years. 

 

Oxidation of voltage-gated K+ channels: a common 

tread from invertebrates to mammals 

 

KVS-1 (potassium voltage-sensitive subunit 1) is a 

voltage-gated K+ channel that operates in the nervous 

system of C. elegans [30]. Wild type KVS-1 currents 

exhibit rapid activation-inactivation and as such can be 

described as A-type; however, their inactivation kinetics 

are slower than typical A-type kinetics due to the presence 

of the N-inactivation regulatory domain (NIRD) which 

hinders the inactivation ball [31]. Most importantly, KVS-

1 inactivation is redox-dependent. Generic oxidants such 

as chloramine-T (CHT) or hydrogen peroxide (H2O2) turn 

the KVS-1 current into non-inactivating, delayed rectifier 

type by modifying a cysteine in the N-terminus (cys113) 

[32]. The simple redox-dependence of KVS-1, along with 

the fact that C. elegans is genetically tractable and that the 

behavior mediated by the neurons where KVS-1 operates 

can be experimentally assessed, allowed us to study the 

effects of oxidation of the channel by ROS in aging 

worms [32]. By constructing a transgenic animal 

expressing a KVS-1 redox-insensitive variant (C113S), 

we showed that not only KVS-1 is subject to a natural 

process of oxidation during aging but most importantly, 

that this process affects behavior [32]. While our findings 

have provided the first experimental evidence that 

oxidation of a K+ channel by ROS is a mechanism of 

aging, they have also raised the question as to whether this 

process affects higher organisms. KVS-1 has a 

mammalian homolog, the KCNB1 K+ channel (commonly 

known as Kv2.1). KCNB1 is expressed in the pancreas 

and in the brain—mainly in hippocampus and cortex—

and knock out studies have shown that the protein is 

important for the function of both organs [33-42]. Like its 

C. elegans homolog, also KCNB1 is directly susceptible 

to oxidation, even though in a more complex fashion [43]. 

When KCNB1 channels are exposed to CHT or H2O2 they 

form oligomers held together by disulfide bridges 

between cys73—the equivalent of cys113 in KVS-1—and 

other cysteines [43, 44]. KCNB1 oligomers are detected 

in the brains of old mice, in amounts that increase with 

age. Moreover KCNB1 oligomerization is exacerbated in 

the brain of the 3x-Tg-AD mouse model of Alzheimer’s 

disease [43, 45]—a brain subjected to high oxidative 

stress. Oligomerized KCNB1 channels do not conduct 

current in vitro [43] and probably in vivo [46] and under 

acute oxidative insults they induce apoptosis [44]. 
However, oligomerization is only one mechanism by 

which KCNB1 promotes cell death (reviewed in [47]); 

other mechanisms have also been amply demonstrated 

and will not be discussed here [48-52]. Suffice to say that 

KCNB1 channels exhibit multiple apoptotic profiles. In 

summary, the evidence at hand would suggest that 

moderate levels of oxidized KCNB1 channels affect 

hippocampal and cortical excitability, and might lead to 

spatial learning and memory impairment experienced 

during normal aging. When ROS levels further increase, 

such as in AD, oxidation of KCNB1 may become 

exacerbated and promote neuronal apoptosis. 

 

Oxidation of Ca2+-activated K+ channels in the brain 

 

Another family of K+ channels, the calcium-activated K+ 

(KCa) channels, are implicated in the aging process of the 

brain [53-61]. These channels have a role in the regulation 

of a number of physiological functions including neuronal 

excitability, circadian rhythm, smooth muscle tone, 

vasodilation of the microvasculature, K+ flux across 

endothelial cells and cell proliferation (reviewed in [62]). 

KCa channels exhibit a complex redox-dependence. A 

number of their methionine and cysteine residues can be 

oxidized, leading to changes in both the permeation and 

gating properties of these channels [27, 63, 64]. 

Moreover, KCa channels are endowed by accessory 

subunits, which further act to modulate the susceptibility 

of the channels to ROS [65].  Given the strong redox-

dependence of KCa channels, it is not coincidental that 

there is growing evidence indicating that their activity 

increases with advancing age—probably as a result of 

oxidation—in a variety of organs including the brain, [53, 

54], the skeletal muscle [66, 67] and the vasculature [68, 

69]. Thus, studies at the single-channel level have shown 

that in the pyramidal neurons of the hippocampus, 

oxidants act to enhance KCa activity via an increase in the 

open probability [55]. KCa conductances are elevated in 

neurons subjected to high oxidative stress, such as in the 

brain of the TgCRND8 mouse model of amylopathy—

thus of Alzheimer’s disease—as well as in cerebral 

ischemia [56, 57].  Finally, hyperactive KCa channels at 

the synapses of hippocampal and other neuron types [58-

61], are the likely culprits for the altered contents of K+ 

detected in synaptosomes isolated from the brains of old 

mice [70]. In fact, this and other age-dependent changes 

in synaptosomal parameters can be prevented by 

antioxidant treatments. In the examples discussed above, 

the function of KCa channels is altered in consequence of 

aging. However KCa channels may also directly impact the 

aging process. According to a recent report, the opening 

of KCa channels in the inner membrane of brain 

mitochondria acts to decrease ROS production via 

respiratory chain complex 1 [71]. It is tempting to 
speculate that during aging the anti-oxidant action of these 

channels may diminish, leading to increased oxidative 

stress in neurons. 
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In summary, it appears that K+ channels are naturally 

subjected to oxidation in aging nervous systems. It 

remains to be demonstrated whether there is a causative 

relationship between these oxidative processes and 

behavioral and functional impairment in vertebrates. This 

is however likely to be the case considering that in other 

tissues, such as microvasculature, oxidation of KCa 

channels has a functional impact on physiology. 

 

Oxidation of KCa channels in the vasculature  
 

Reduced blood flow is a hallmark of vascular aging. Ion 

channels are among the culprits for causing this deficit 

because they control electrical conduction which 

underlies vasoconstriction. One class of proteins known 

to undergo modification in aging vascular tissue are KCa 

channels [72-74]. Recently, Behringer and colleagues 

[68] showed that in aging mice, oxidation of small and 

intermediate conductance KCa channels by ROS is a major 

causative factor of reduced blood flow. In superior 

epigastric arteries of old animals, electrical conduction 

was impaired due to oxidation-induced hyperactivation of 

KCa channels. This was demonstrated by the fact that 

application of H2O2 reduced conduction in young animals 

whereas the use of scavengers, restored conduction in old 

arteries. More recently, Feher and colleagues [69] 

reported that in coronary arterioles dissected from patients 

undergoing cardiac surgery, conducted dilation declined 

with age. Like in mice, also in human vessels small and 

intermediate KCa conductances turned out to be 

hyperactivated. Thus, it appears that reduced blood flow, 

caused by oxidation of KCa channels by ROS, may 

represent a general mechanism of aging in the 

microvasculature. 

 

Conclusions 
 

Experimental support for the notion that oxidation of K+ 

channels by ROS is a mechanism of aging is growing. 

While it is well-established that these proteins undergo 

age-dependent oxidation, it remains to be defined whether 

their modifications impact and if they do, to which extent, 

the function of the organs and tissues where they operate. 

Approaches based on the use of transgenic animals, like it 

was done with KVS-1 in C. elegans, will enable us to 

answer this question in the near future. 
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