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ABSTRACT: Degenerative diseases often strike older adults and are characterized by progressive 

deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective 

treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H+-

activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant 

activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating 

evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including 

multiple sclerosis, Parkinson’s disease, Huntington’s disease, intervertebral disc degeneration and arthritis. 

In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as 

therapeutic targets in degenerative diseases. 
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Degenerative diseases are characterized by massive cell 

loss, ultimately leading to deterioration in quality or 

function of tissues or organs and possible failure of vital 

organs [1, 2]. Although the etiology and pathogenesis of 

these diseases remain unclear, recent advances indicate 

that the processes of organ deterioration share common 

core features, including cell injury and dysfunction that 

contribute to functional and morphological impairment of 

cells. Despite considerable progress in understanding the 

molecular mechanisms of degenerative diseases, current 

therapeutic options are limited and no effective treatment 

drugs have emerged to date. Elucidation of both the 

common and unique mechanisms of deterioration may 

therefore facilitate the identification and development of 

effective anti-degenerative targets and drugs. 

Acid-sensing ion channels (ASICs) belonging to the 

degenerin/epithelial sodium channel (DEG/ENaC) 

superfamily are widely distributed within mammalian 

nervous systems as well as non-neural tissues, such as 

cancer cells [3], articular chondrocytes [4] and 

intervertebral disc cells [5], where they play significant 

pathophysiological roles. ASICs are proton-gated cation 

channels activated by acidosis, lactate and arachidonic 

acid, which are involved in Na+ and Ca2+ flux [6]. 

Intracellular Ca2+ ([Ca2+]i) is a ubiquitous second 

messenger in signal transduction pathways that modulates 

diverse physiological functions. Under pathological 

conditions, a robust increase in [Ca2+]i usually occurs 

through various extracellular Ca2+ influx and intracellular 

Ca2+ release mechanisms [7]. Ca2+ influx into cells is 

commonly mediated through activating channels or 

receptors, such as voltage-gated Ca2+ channels, α-amino-
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3-hydroxyl-5-methyl-4-isoxazole-propionate receptors, 

transient receptor potential channels, and N-methyl-D-

aspartate receptors [8]. Interestingly, ASICs have been 

shown to play crucial roles in modulating cell behavior 

via regulation of intracellular Ca2+ accumulation, 

including apoptosis [4, 9], differentiation [10], and 

autophagy [11]. Multiple lines of evidence suggest that 

aberrant expression and activation of ASICs contribute to 

the progression of various degenerative diseases, 

including multiple sclerosis, Parkinson’s disease, 

Huntington’s disease, intervertebral disc degeneration and 

arthritis. This review provides a summary of the 

properties of ASICs and their functional roles in the 

degenerative processes of several diseases, with further 

focus on their potential utility as novel pharmacological 

and therapeutic targets for degenerative diseases.  

 

Structure and characteristics of ASICs 

 

ASICs are voltage-independent, proton-gated cation 

channels that can be blocked by amiloride. To date, at least 

seven different ASIC isoforms (ASIC1a, ASIC1b, 

ASIC1b2, ASIC2a, ASIC2b, ASIC3, ASIC4) encoded by 

four separate genes (Accn1, Accn2, Accn3 and Accn4) 

have been identified in mammals [12-14]. All members of 

the ASIC family share the same topology as the 

DEG/ENaC family, comprising two hydrophobic 

transmembrane domains (TM1 and TM2), short 

intracellular N-and C- termini, and a large cysteine-rich 

extracellular loop [15, 16] (Fig.1A). The extracellular 

domain of ASICs has a highly negative cavity, designated 

'acidic pocket', which is located distant from the 

transmembrane domain [17]. This acidic pocket, 

considered an ASIC pH sensor, contains several pairs of 

acidic amino acids and is responsible for acid-dependent 

gating, desensitization as well as response to specific 

extracellular modulators [18]. The functional channel of 

ASICs is a trimer of these subunits [17] (Fig.1B). The 

majority of homomeric and/or heteromeric trimers have 

different properties. Interestingly, however, ASIC2b and 

ASIC4 cannot form functional homomeric proton-gated 

channels by themselves [19, 20].  

 

 

 
 
Figure 1. The structure and electrophysiological properties of ASICs.  (A) Structure of individual ASIC 

subunits. (B) Three subunits assemble to form a functional homo- or heterotrimeric channel. (C) 

Electrophysiological properties of ASICs: representative traces of ASIC1a, ASIC2a, and ASIC3 in pH 6.0, 4.5, 

and 5.0 solutions, respectively. The membrane potential was clamped to -60 mV.  
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Table 1. Properties of ASIC channels 

Gene Protein Alternative name pH50 activation Inhibitor References 

Accn2 ASIC1a ASICα 

BNaC2α 

6.2-6.8 Amiloride 

PcTx1 

Mambalgins 

Benzamil; 

A-317567 

[6, 15-17, 21, 36] 

ASIC1b ASICβ 

BNaC2β 

5.9 Amiloride 

Mambalgins 

Accn1 ASIC2a MDEG1 

BNaC1α 

BNC1 

4.35 Amiloride 

A-317567 

[15, 22, 38, 39] 

ASIC2b MDEG2 

BNaC1β 

N/A N/A 

Accn3 ASIC3 DRASIC 

TNaC 

6.2-6.7 Amiloride 

APETx2; 

A-317567 

[15, 36, 43, 44] 

Accn4 ASIC4 SPASIC N/A N/A [15] 

 

N/A, not applicable 

 

ASIC subunits are abundantly expressed in central 

and peripheral neurons and non-neural tissues [21], but 

show variable distribution. All the isoforms are expressed 

in the peripheral nervous system [22], while ASIC1a, 

ASIC2a and ASIC2b subunits are primarily localized in 

the central nervous system (CNS) [19, 23]. ASIC1a is 

widely expressed throughout the cerebral cortex, 

hippocampus, cerebellum, pineal gland, amygdala, dorsal 

root ganglion, and bone [24-27]. ASIC1b is almost 

exclusively expressed in sensory neurons. In contrast, 

ASIC3 is predominantly expressed in dorsal root ganglia 

neurons, especially nociceptive sensory neurons [28]. 

ASIC4, a new member of this ion channel group, exists 

within inner ear neurons, adenohypophysis, and 

intervertebral disc [29, 30]. 

ASICs are extremely susceptible to reduction of 

extracellular pH. Under pathological conditions, such as 

inflammation, ischemia and hypoxia, decrease in 

extracellular pH from ~7.5 to 4 triggers activation of 

ligand-gated cation channels, including ASICs [31, 32]. 

Despite similar topological structures, different subunits 

display distinct sensitivities to additional decreases in 

extracellular pH (Fig.1C). For instance, ASIC1a and 

ASIC3 are the most sensitive to H+ channel proteins of 

these subunits than other ASIC members, which are 

activated by pH levels below 7.0 [33]. In contrast to 

ASIC1a homomers, ASIC2a shows low sensitivity to 

reduced extracellular pH (pH50=4.35) and slow channel 
inactivation [34, 35]. Moreover, homomeric ASIC2a 

displays slower kinetics of desensitization than ASIC1a 

homomers [36, 37]. ASIC2b does not form functional ion 

channels by itself, distinct from homomeric ASIC2a 

subunits [19]. On the other hand, ASIC2b associates with 

other ASIC subunits to form heteromultimeric channels 

with unique functional properties [19, 35]. ASIC3 is 

primarily expressed in peripheral sensory neurons and 

plays an important role in pain perception, particularly 

high-intensity pain stimulation and acid-induced 

hyperalgesia [38]. The current of homomeric ASIC3 

consists of instantaneous and steady-state components, 

which differ significantly in sensitivity to extracellular 

hydrogen ions [39]. The electrophysiological 

characteristics of ASIC4 remain largely unknown and 

require further study (Table 1). 

 

ASICs and Multiple Sclerosis 
 

Multiple sclerosis (MS) is a demyelinating autoimmune 

disease of the CNS affecting both the brain and spinal cord, 

which leads to axonal degeneration [40]. Although the 

etiology of MS is unclear, new insights suggest 

oligodendrocyte apoptosis as one of the critical events in 

physiological and pathophysiological processes [41]. 

Several studies have revealed that cytokine and ionic 

imbalance are the most important factors in axonal 

degeneration through inducing neuron mitochondrial 

dysfunction, alteration of ion exchange mechanisms and 

energy failure [42]. Recent histological analyses and in 

vivo studies have confirmed that undue accumulation of 
Ca2+ and Na+ ions contributes to axonal degeneration 

during MS, and activation of ASIC1 plays a crucial role 

in accumulation of Na+ and Ca2+ ions [43, 44]. Disruption 
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of the ASIC1 gene in mice markedly attenuated clinical 

deficits and axonal degeneration in an experimental 

autoimmune encephalomyelitis (EAE) mouse model of 

MS. Moreover, pH measurements showed that the pH 

dropped from ~7.4 to ~6.5 in inflammatory CNS lesions, 

indicating that tissue acidosis is sufficient to open the 

ASIC1 channel in the spinal cord of EAE mice. Inhibition 

of ASICs by the non-specific blocker, amiloride, led to 

neuroprotective effects against axonal degeneration [40]. 

Another recent study revealed enhanced expression of 

ASIC1 in spinal cord, optic nerve tissues and axons within 

lesions from patients with active MS and mice with acute 

EAE [45]. Increased ASIC1 expression was additionally 

observed via co-localization with the axonal damage 

marker, β-amyloid precursor protein, and associated with 

axonal injury. Remarkably, amiloride exerted protective 

effects against myelin and neuronal injury in the acute 

model, and ameliorated disability in mice with chronic-

relapse EAE. In addition, 4-aminopyridine influenced the 

symptoms of MS as well as the course of the disease via 

inhibitory actions on ASIC and voltage-gated potassium 

channels [46]. These findings collectively support the 

potential efficacy of ASIC1 as a protective target for axon 

degeneration associated with active MS. 

Consistent with the pivotal role of ASIC1 in the 

animal model of MS, studies by Arun et al. [47] showed 

that amiloride exerts a neuroprotective effect in patients 

with primary progressive MS. The normalized annual rate 

of whole-brain volume during the amiloride treatment 

phase (3 years) was significantly reduced, compared to the 

pretreatment phase. Similarly, changes in diffusion 

indices of tissue damage within primary clinically 

relevant deep grey matter and white matter structures 

were markedly alleviated during the treatment phase. A 

significant association between polymorphisms in MS 

and ASIC2 was revealed in a genome-wide study, further 

confirming the theory that ASIC2 is involved in the 

pathogenesis of MS [48]. Taken together, these findings 

suggest that blockade of ASICs may provide an 

alternative therapeutic approach to attenuate axon 

degeneration associated with MS. Nevertheless, the 

mechanisms by which ASICs regulate related cellular 

processes involved in MS, such as inflammation, remain 

to be established. 

 

ASICs and Parkinson’s disease 
 

Parkinson’s disease (PD) is a chronic, progressive 

neurodegenerative disease characterized by the 

degeneration of midbrain dopaminergic neurons, resulting 

in motor dysfunction and disability [49, 50]. The 
underlying mechanisms of neuronal loss associated with 

PD processes are currently unclear. A number of cell death 

pathways have been described in PD. Programmed cell 

death is a mechanism underlying cell demise in numerous 

pathologies, including progressive neurodegenerative 

disorders [51]. Midbrain dopamine neurons are 

vulnerable to toxic damage, which leads to disorders, such 

as PD. The pathologic process is associated with cerebral 

lactic acidosis. A previous report focused on the presence 

and characteristics of ASICs in mesolimbic dopamine 

neurons [52]. More recent studies have provided direct 

evidence that amiloride not only protects substantia nigra 

neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydro-

pyridine-induced degeneration but also preserves 

dopaminergic cell bodies in the substantia nigra [53]. 

Additionally, administration of PcTX venom, a specific 

blocker of ASIC1a, had a modest effect, reducing loss in 

striatal dopamine active transporter binding and dopamine 

uptake. Interestingly, a deficit in the ubiquitin E3 ligase, 

parkin, significantly promoted the protein kinase C-

evoked potentiation of native ASIC-like currents in 

hippocampal neurons. ASIC signaling may play a pivotal 

role in defects in parkin-mediated monoubiquitination of 

protein interacting with C kinase 1 that contribute to 

dopamine neuron degeneration in PD [54]. Paeoniflorin 

(PF), a monoterpene glycoside extracted from the root of 

Chinese herb Radix Paeoniaealba, is traditionally used to 

treat neurodegenerative disorders, especially PD. Both 

amiloride and PF protected PC12 cells against acid-

induced injury and apoptosis by reducing Ca2+ influx, 

possibly through inhibition of ASIC1a channels [55]. 

Notably, the neuroprotective effects of amiloride and PF 

were associated with upregulation of autophagy-

related protein light chain 3 (LC3)-II. Furthermore, PF 

enhanced the autophagic degradation of α-synuclein via 

modulating protein expression and activity of ASICs, 

subsequently leading to protective effects against 

acidosis-induced cytotoxicity [11]. These findings 

collectively support blockade of ASICs as a potential 

therapeutic strategy for PD. Further studies focusing on 

the effects of application of ASIC inhibitors to patients 

with PD are necessary to accurately define the specific 

roles of ASICs in this neurodegenerative disorder. 

 

ASICs and Huntington’s disease 

 

Huntington’s disease (HD) is a rare, progressive and fatal 

hereditary neurodegenerative disease characterized by 

movement and personality disorders and progressive 

cognitive decline [56], for which no completely effective 

treatments in human patients are currently available. A 

common and widely reported phenomenon of energy 

metabolism impairment in HD is accumulation of lactic 

acid in the CNS and possible subsequent acidosis in both 
animal models and human patients [57, 58]. Wong et al. 

[59] showed that the amiloride derivative, benzamil, a 

potent blocker of epithelial sodium channels, significantly 
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decreases huntingtin-polyglutamine (htt-polyQ) 

aggregation in vitro. The therapeutic effect of benzamil 

was confirmed in the R6/2 animal model of HD. 

Administration of benzamil additionally ameliorated 

inhibition of ubiquitin-proteasome system (UPS) activity, 

promoting degradation of soluble htt-polyQ specifically 

in its pathological range. Furthermore, blockage of 

activity and/or expression of ASIC1a via RNA 

interference enhanced UPS activity and reduced htt-

polyQ aggregation in the striatum of R6/2 model mice. 

The results suggest that ASICs play a pivotal role in 

the polyQ aggregating process and pathogenesis of HD, 

and may therefore present an effective therapeutic target 

for progressive HD and other polyQ-related disorders. 

However, it is essential to establish the validity of ASIC 

inhibitors as HD treatment agents in preliminary 

preclinical studies. 

 

 

 

 

 
 

 
Figure 2. Roles of ASICs in arthritis fibroblast-like synoviocytes and chondrocytes. ASICs were activated by 

extracellular low pH to positively regulate [Ca2+]i, inducing activation of PP2A and pERK to mediate cell death in FLS. 

Simultaneously, activated ASICs triggered intracellular Ca2+ accumulation in articular chondrocytes and subsequently 

upregulated Calpain, Calcineurin, Bax, Cytochrome c and Caspase 3/9, ultimately leading to chondrocyte apoptosis in 

arthritis. 

 

 

ASICs and Intervertebral Disc Degeneration 
 

Intervertebral disc degeneration (IVDD) is characterized 

by chronic excessive destruction of the extracellular 

matrix (ECM), leading to low back pain [60, 61]. 
Although disc cell death through apoptosis is closely 

associated with development of IVDD, the underlying 

mechanisms are not fully elucidated. Under hypoxic 

conditions, disc cell metabolism is partially anaerobic, 

resulting in high concentrations of lactic acid and an 

acidic environment that is enhanced by the presence of 

cytokines [62, 63]. Matrix acidity has a potentially 

negative effect on gene expression, proliferation and 
viability of disc cells [64]. A recent study reported a 

significant increase in ASIC1 and ASIC4-positive cells in 

the annulus fibrosus of degenerated IVD and marked 
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upregulation of ASIC1, ASIC2 and ASIC3 in the nucleus 

pulposus [30]. More importantly, Li et al. [65] 

demonstrated that acid-induced [Ca2+]i elevation via 

ASIC1a is involved in endplate chondrocyte apoptosis. 

Moreover, inhibition of ASIC1a using psalmotoxin 1 

(PcTx1) or specific small interfering RNA (siRNA) 

suppressed acid-induced apoptosis and elevation of 

[Ca2+]i in endplate chondrocytes of IVDs.  Another recent 

study by Yuan et al. [66] demonstrated that ASIC1a 

activation by extracellular acid induces ECM metabolism 

via increasing matrix metalloproteinases activity and 

expression through the nuclear factor-κB (NF-κB) 

signaling pathway in rat endplate chondrocytes. 

These results provide evidence that the effects of 

ASIC1a on IVDD are attributable to its role in modulating 

cell apoptosis and ECM synthesis. However, gaps still 

exist in unraveling the precise regulatory mechanisms 

associating IVDD with different isoforms of ASICs. 

While these findings suggest considerable promise for 

inhibition of ASICs as a unique strategy for treatment of 

IVDD, further research is warranted to determine the 

biological role of ASICs in IVDD in vitro as well as in 
vivo. 

 

 

 
Figure 3. Schematic diagram summarizing the involvement of ASICs in 

cellular functions. Ischemia, inflammation and hypoxia give rise to tissue 

acidosis. ASICs are activated by extracellular H+ and mediate Ca2+ influx. 

[Ca2+]i overload in various cell via ASICs leads to the development of 

degenerative diseases. 
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Table 2. The roles of ASICs in degenerative diseases 

Disease Experiment model/ 

cells or Patients 

ASICs inhibition Roles of blocking ASICs References 

MS EAE 

EAE 

Patients 

ASIC1-/-, amiloride 

ASIC1-/-, amiloride 

Amiloride 

disease severity↓, axonal loss↓, 

β-APP↑, oligodendrocyte injury↑, 

demyelination↑ 

whole-brain volume↓, diffusion indices 

of tissue damage↓ 

[40] 

[45] 

[47] 

PD MPTP 

 

PC12 cells 

Amiloride, PcTX1 

 

Amiloride, PF 

SNc neurons degeneration↓, TH↑, 

DAT↑, DAT radioligand binding↑, 

Striatal DAT binding↑, dopamine↑ 

[Ca2+]i↓, LC3-II↑, LAMP2a↓ 

[53] 

 

[55] 

HD R6/2 Benzamil, ASIC1a siRNA htt-polyQ aggregation↓, UPS↑ [59] 

IVDD endplate chondrocytes PcTX1, ASIC1a siRNA apoptosis↓, caspase-9↓, caspase-3↓, 

MMP-1/9/13↓ 

[65, 66] 

Arthritis AA 

articular chondrocytes 

MIA 

CAIA 

Amiloride 

Amiloride, ASIC1a 

siRNA, PcTX1 

APETx2 

ASIC3−/− 

Mankin scores↓, COII↑, aggrecan↑ 

[Ca2+]i↓, caspase-9↓, caspase-3↓, Bcl-

2↑, Bax↓ 

secondary hyperalgesia↓ 

inflammation↑, joint destruction↑, 

[Ca2+]i↓ 

[25, 72] 

[9, 73] 

[78, 79] 

[81-83] 

 

MS, Multiple sclerosis; EAE, experimental autoimmune encephalomyelitis; β-APP, β-amyloid precursor protein; PD, Parkinson’s disease; HD, 
Huntington’s disease; IVDD, Intervertebral disc degeneration; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; SNc, substantia nigra; TH 

 

 

ASICs and Arthritis 
 

Arthritis is inflammation of one or more joints resulting 

in cartilage and bone destruction. The main symptoms are 

joint pain, swelling and stiffness that are typically 

exacerbated with age. The most common types of arthritis 

are osteoarthritis (OA) and rheumatoid arthritis (RA) [67, 

68]. Articular cartilage, a thick and highly hydrated 

biological soft tissue that lines the surfaces of bones in 

diarthrodial joints such as the knee, is critical for 

physiological mobility [69]. Under normal conditions, 

cartilage homeostasis is maintained by the balance 

between synthesis and degradation of ECM components, 

including type II collagen and aggrecan, the most 

abundant proteoglycan in articular chondrocytes [70]. 

However, in arthritis states, disruption of the matrix 

equilibrium leads to progressive loss of cartilage tissue 

and apoptosis of cells. Interestingly, matrix turnover is 

influenced by changes in chondrocytes exposed to 

extracellular acidosis [71]. Recently, to determine the 

potential involvement of ASICs in cartilage injury, our 

group tested the effects of amiloride both in vitro and in 
vivo [72]. We observed a significant increase in 

intracellular calcium in articular chondrocytes exposed to 

extracellular pH 6.0. Amiloride diminished this increase 

in [Ca2+]i and attenuated acid-induced articular 

chondrocyte injury. In addition, amiloride induced a 

significant decrease in Mankin scores, but increased type 

II collagen and aggrecan mRNA and protein expression in 

articular cartilage in adjuvant arthritis (AA) rats. 

Blockade of ASIC1a with PcTX1 or specific siRNA 

inhibited acid-induced osteoclast differentiation and bone 

resorption via regulating activation of the transcription 

factor, nuclear factor of activated T cells c1 [10]. Similarly, 

the ASIC1a-specific blocker PcTX venom attenuated 

acid-induced articular chondrocyte damage [25]. 

Furthermore, blocking ASICs markedly decreased calpain 

and calcineurin expression levels as well as caspase-3/9 

activity, and led to recovery of mitochondrial membrane 

potential via regulation of B-cell lymphoma-2 family 

gene expression in acid-induced chondrocytes [9, 73]. A 

more recent study reported that interleukin-6 promotes 

acid-induced articular chondrocyte apoptosis to a 

significant extent by activating the JAK2/STAT3 and 

MAPK/NF-κB signaling pathways, resulting in 

upregulation of ASIC1a expression and function [4]. 

Hidden chronic pain is one of the prominent clinical 

features of arthritis. Although significant progress has 

been made in terms of elucidating the mechanisms of joint 

pain at the cellular and molecular level, the data are 

insufficient to facilitate the development of more effective 

treatments for arthritic pain. Proton (H+) accumulation in 

file:///C:/Users/Administrator/Desktop/周仁鹏/修回/Tabel%202.docx%23_ENREF_9
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tissues was recently shown to directly cause algesia and 

hyperalgesia. ASIC3, a main acid receptor, plays a key 

role in acid-induced injury and pain [74]. Babinski et al. 

[75] reported that ASIC3 is activated in the collagen-

induced arthritis pain model, which was also verified in 

AA [76]. Moreover, inflammation led to a decline in pH, 

and in turn, activation of ASIC3 on primary afferent fibers 

innervating the knee joint and generation of central pain 

hypersensitivity. ASIC3 plays an important role in 

secondary hyperalgesia of the paw, but has a weak 

influence on primary hyperalgesia [74, 76, 77]. A recent 

study demonstrated that weight distribution asymmetry 

and secondary hyperalgesia are inhibited by continuous 

intra-articular injection of APETx2 through attenuating 

ASIC3 upregulation in knee joint afferents in a mono-

iodoacetate-induced OA model [78]. Furthermore, Deval 

et al. [79] showed that knockdown of ASIC3 with siRNA 

and APETx2, a specific blocker of ASIC3, had markedly 

effective antinociceptive action against primary 

inflammation-induced hyperalgesia in rat. 

Fibroblast-like synoviocytes (FLS) play a vital role 

in RA pathogenesis, and thus targeting FLS may 

ameliorate the clinical outcomes of inflammatory arthritis 

[80]. Interestingly, Kolker et al. [81] found a significantly 

lower increase in intracellular calcium and hyaluronan 

release in ASIC3 knockout FLS at pH 5.5, compared to 

control FLS. Unexpectedly, joint inflammation and 

destruction were significantly enhanced in ASIC3 

knockout mice with collagen antibody-induced arthritis, 

compared to wild type (WT) mice. Moreover, FLS 

exposed to pH 6.0 displayed enhanced cell death in the 

presence of IL-1, which was eliminated in ASIC3-/- FLS 

[82]. IL-1β upregulated ASIC3 mRNA and enhanced 

[Ca2+]i, p-ERK, IL-6 and metalloproteinase mRNA as 

well as cell death in WT FLS exposed to pH 6.0. Inhibitors 

of [Ca2+]i and ERK prevented cell death induced by acidic 

pH in combination with IL-1β in WT FLS [83]. Since 

ASIC3 itself is not Ca2+ permeable, the mechanism of 

ASIC3-mediated regulation of [Ca2+]i may be as follows: 

deletion of ASIC3 reduces pH sensitivity of ASICs, 

release of internal Ca2+ stores and secondary activation of 

other Ca2+-permeable channels [84-86]. These findings 

suggest that ASIC3 plays a protective role in 

inflammatory arthritis via inhibiting synovial 

proliferation, which reduces accumulation of 

inflammatory cytokines and subsequent joint damage 

(Fig.2). 

ASIC1a may therefore promote articular 

chondrocyte apoptosis as well as osteoclast differentiation. 

Moreover, elevated levels of ASIC3 in the DRG 

contribute to arthritic pain, supporting inhibition of ASICs 
as a potential therapeutic strategy for arthritis. However, 

ASIC3 has also been shown to play an inhibitory role in 

synovial proliferation and subsequent accumulation of 

inflammatory mediators, indicative of a protective effect 

in joints. Although several investigators agree that ASICs 

are involved in the pathogenesis of arthritis, in light of the 

controversial evidence, the roles of these ion channels in 

arthritis require further investigation. Clarification of the 

precise roles of different ASIC subtypes in the 

pathogenesis of arthritis may aid in the identification of 

novel pharmacological targets (Table 2). 

 

Conclusion  
 

Acid-alkaline balance is an important factor for 

maintaining normal physiological activities. However, 

almost all types of pathological states, such as ischemia, 

inflammation, hypoxia and cancer, lead to variations in 

pH. Recent research has focused on the roles of ion 

channels, such as DEG/ENaC, in diseases. In particular, 

given that ASICs serve as pivotal acid receptors, multiple 

lines of evidence support their involvement in the 

progression of tissue acidosis. Interestingly, this protein 

family is closely correlated with various degenerative 

diseases, supporting their potential value as therapeutic 

targets (Fig.3). The current study showed that amiloride is 

a classic inhibitor drug of the DEG/ENaC family, but not 

selective for ASICs. Although several specific ASIC 

blockers exist, such as PcTx1 and APETx2, their clinical 

utility remains to be determined. With the advances in 

biological and molecular techniques, improved 

knowledge on ASIC function and structure should 

facilitate the development of a suitable and specific 

inhibitor for clinical treatment of degenerative disorders. 

However, the current evidence regarding ASICs in 

degenerative diseases is relatively limited, the majority of 

which has been obtained using animal models or in vitro 

systems. Human studies with larger patient populations 

are required to accurately resolve the mechanisms of 

action of ASICs in the development of degenerative 

disorders, which may provide a rationale for developing 

effective therapeutic interventions targeting ASICs for 

preventing degenerative disease progression. 
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