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ABSTRACT: COVID-19 is an evolving pandemic that has far reaching global effects, with a combination of factors 

that makes the virus difficult to contain. The symptoms of infection can be devastating or at the least very 

debilitating for vulnerable individuals. It is clear that the elderly are at most risk of the adverse impacts of the 

virus, including hospitalization and death. Others at risk are those with comorbidities such as cardiovascular 

disease and metabolic conditions and those with a hyper-excitable immune response. Treatment options for those 

with acute responses to the virus are limited and there is an urgent need for potential strategies that can mitigate 

these severe effects. One potential avenue for treatment that has not been explored is the microbiome gut/lung 

axis. In addition to those severely affected by their acute reaction to the virus, there is also a need for treatment 

options for those that are slow to recover from the effects of the infection and also those who have been adversely 

affected by the measures put in place to arrest the spread of the virus. One potential treatment option is 

photobiomodulation (PBM) therapy. PBM has been shown over many years to be a safe, effective, non-invasive 

and easily deployed adjunctive treatment option for inflammatory conditions, pain, tissue healing and cellular 

energy. We have also recently demonstrated the effectiveness of PBM to alter the gut microbiome. PBM therapy 

is worthy of consideration as a potential treatment for those most vulnerable to COVID-19, such as the elderly 

and those with comorbidities. The treatment may potentially be advantageous for those infected with the virus, 

those who have a slow recovery from the effects of the virus and those who have been denied their normal 

exercise/rehabilitation programs due to the isolation restrictions that have been imposed to control the COVID-

19 pandemic. 
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First reported in December 2019 (www.who.int/ csr/don/ 

05-january-2020-pneumonia-of-unkown-cause-china/ 

en/), more than 21 million people have now been infected 

by the new Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2). The infection per se, and 

its therapy, have claimed over half-a million deaths 

worldwide, which continues to rise daily 

www.worldometers.info/coronavirus/. 

There are dozens if not hundreds of different types of 

coronaviruses, four of which have been shown to cause 

mild and mainly upper respiratory infections (the so called 

common cold); 2 strains cause severe and frequently 

lethal outbreaks of respiratory infections, one in 2002 

referred to as SARs (severe acute respiratory syndrome), 

the other, MERs (Middle East Respiratory Syndrome) 

occurred in 2012. The third and latest coronavirus 
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pandemic, raging since late 2019 is caused by yet another 

strain. The virus particle is around 100 nanometres in 

diameter and can be seen only through an electron 

microscope. The aerosol or droplet transmission of the 

virus to humans gains entry through mucosal surfaces of 

the mouth, nose and eyes [1]. Viral entry is mediated 

through the angiotensin converting enzyme 2 (ACE2) 

receptor, a membrane-associated enzyme expressed in 

vascular endothelia, renal and cardiovascular tissue as 

well as epithelia of the small intestine. The relationship 

between ACE2 expression and infection has not been 

determined [2]. The treatment of cardiovascular disease 

(CVD) with angiotensin‐converting enzyme inhibitors 

and angiotensin receptor blockers have the additional 

effect to upregulate ACE2 expression, which may play a 

significant role in individual viral responses. 

The median incubation period before symptoms 

might become evident is 4.9 – 5.8 days, with a range of 1 

– 14 days [3]. Once infected and thus contagious, the 

relatively long incubation period in humans facilitates the 

spread of the infection [3].  Beyond the incubation period, 

symptoms of the infected vary widely, from none or 

minimal symptoms, to florid and rapidly progressive 

respiratory distress. The elderly are the most predisposed 

to the deleterious sequalae of COVID-19 [4-6], most 

probably due to an aging immune system, increased 

manifestations of inflammatory conditions and 

accumulated mitochondrial dysfunction [7]. In the USA, 

77% of all deaths are in the over 65 years age group [5]. 

Those with chronic comorbidities that impact their 

immune system are the second group at risk, including 

CVD [8], type II diabetes (T2D) [9, 10], chronic 

respiratory disease [10], hypertension [10], cancer [11], 

metabolic syndrome [12] and obesity [13, 14]. It has been 

reported that less than 1% of all deaths from COVID-19 

do not have a comorbidity [15]. A third susceptible group 

are those with a hyper-excitable neuro-immune axis, 

which affects the nervous system as well as endothelial 

and vascular responses leading to an over-intense immune 

response. These people are often younger and can have 

hyper-excitable physiological responses to environmental 

stressors. Risk factors for this response include genotypes 

for ion channelopathies such as migraine, erythromyalgia 

and epilepsy, resulting in these endothelial susceptibilities 

[16].  This group can be of higher intelligence [17] and are 

possibly over-represented in health care workers. Health 

care workers possibly have a higher morbidity and 

mortality compared to the general population [18], which 

may be influenced in some way by this immune hyper-

excitability.   

Those susceptible to the virus may succumb to 

dysregulated immunity, recalcitrant deoxygenation and 

respiratory distress, multi-organ failures and debility 

resulting from prolonged a catabolic state. Importantly, 

they also often suffer adverse reactions (ADRs) to 

therapeutic interventions including the established and 

potential cardiovascular ADRs related to the antibiotics 

and high dose corticosteroids, anti-viral and immune 

modulating drugs currently used in the management of 

COVID-19 infections [19, 20]. Other features of infection 

include cardiovascular injury [2], atrial fibrillation [21], 

central and peripheral nervous system symptoms [22], 

which affect over a third of the infected patients [23], 

mouth ulcers and hyposmia/anosmia  (loss of smell). 

Rapid and fulminant progression to pneumonia can occur 

in the elderly and people with comorbidities. This is 

thought to occur as a result of an initial poor immune 

response followed by an inappropriate hyper-immune 

reaction or “cytokine storm”. The resulting unrelenting 

inflammation affects vital organs including pulmonary 

tissue and vascular structures [6]. This over-responsive 

immune response may be associated with neutrophil 

recruitment and activity [24]. The subsequent cellular 

damage and multi-organ failures heighten mortality risk 

more so than the infection itself and is particularly 

prevalent among the aged and those with comorbidities. 

Immunosuppressive therapies including corticosteroids 

https://clinicaltrials.gov/ct2/show/NCT04355247  to 

prevent or placate the cytokine storm [25, 26] in COVID-

19 have so far only met with modest success. More 

targeted therapies are urgently needed. 

Recovery from COVID-19 is frequently protracted 

and the long-term prognosis remains to be fully realized. 

An unknown percentage will have ongoing symptoms 

after discharge from hospital and/or recovery from overt 

respiratory and other life-threatening symptoms. It has 

been reported www.theguardian.com/australia-news/ 

2020/jul/17/most-covid-19-patients-admitted-to-a-

sydney-hospital-in-march-still-have-symptoms that at 3- 

or 4-months post hospital discharge, up to 80% of 

recovered COVID-19 patients continued to be 

symptomatic. Nonspecific aches and pain, dyspnoea, 

palpitations, joint and chest pain, dizziness or light-

headedness, headaches, fatigability, hyposmia and 

anosmia are not infrequent [27]. More serious ongoing 

symptoms can include pulmonary hypertension and 

interstitial fibrosis, pericardial effusion and myocarditis, 

neurologic and neuropsychiatric sequalae including 

dysautonomia [28], myalgic encephalomyelitis/chronic 

fatigue syndrome (ME/CFS) [29], depression [30] and 

autoimmune disease [31].  

A less recognised consequence of the COVID-19 

pandemic is the unintended effect that the measures taken 

to contain the pandemic have had on vulnerable 

individuals.  Many of these individuals have been unable 

to socialise or to attend exercise and rehabilitation classes 

due to the lockdown period and the social isolation 

necessary to combat spread of the virus. The stress of this 

https://clinicaltrials.gov/ct2/show/NCT04355247
http://www.theguardian.com/australia-news/%202020/jul/17/most-covid-19-patients-admitted-to-a-sydney-hospital-in-march-still-have-symptoms
http://www.theguardian.com/australia-news/%202020/jul/17/most-covid-19-patients-admitted-to-a-sydney-hospital-in-march-still-have-symptoms
http://www.theguardian.com/australia-news/%202020/jul/17/most-covid-19-patients-admitted-to-a-sydney-hospital-in-march-still-have-symptoms
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can have the effect of reducing the resilience and 

immunity of the very individuals (the elderly and those 

with comorbidities) that the measures are designed to 

protect [32], thus increasing the chances of an 

unfavourable outcome if infected. 

A magic bullet solution for the current COVID-19 

pandemic is unlikely in the near future, although much 

research is directed towards an effective vaccine. A wide 

range of social and lifestyle measures to reduce cross 

infection have been met with success in some but not 

other regions or countries [33]. Development and 

discovery of novel and effective pharmacotherapy, 

vaccines for disease prevention and repurposing existing 

drugs to fight the COVID-19 are being robustly pursued 

[34]  but there is also a need for broad scale clinical trials 

of potential strategies, including interdisciplinary 

collaborations, aimed at mitigating the severe effects and 

side-effects of the COVID-19 pandemic [5].  

 

The link to the gastrointestinal microbiome 

 

There is a strong link between the gut microbiome and 

susceptibility to disease and most likely to COVID-19 

[35]. The gut microbiota is well known to affect immunity 

[36, 37], interacting with the gut mucosa and stimulating 

the production of both pro and anti-inflammatory 

cytokines. Low inflammatory conditions support a 

healthy gut microbiota, which in turn contributes to 

maintaining non-inflammatory conditions. A cascade into 

dysbiosis leads to a disruption of the mucosal barrier, 

allowing microbial products of the dysregulated microbial 

population to leak into surrounding tissues and increase 

the inflammatory response, which further increases 

dysbiosis. This contributes to generally reduced immunity 

and to the comorbidities known to contribute to COVID-

19 susceptibility (such as obesity, T2D, heart disease). 

Elderly individuals frequently suffer a decrease in 

microbial diversity in the gut, contributing to dysbiosis. In 

addition, there is a gut/lung axis that links the microbiome 

of the gut with lung health [38], with gut metabolites 

transferred to the lung [37] and the gut bacteria playing an 

important role in the response to acute respiratory distress 

syndrome (ARDS) [35]. Early results of the microbiome 

analysis of a small number of hospitalized COVID-19 

patients indicated that the microbiome was adversely 

impacted, with depletion of bacteria representative of a 

healthy microbiome and enrichment of opportunistic 

pathogens [39]. These changes were correlated with 

disease severity and persisted throughout the 

hospitalization period. 

Changing the composition of the gut microbiota with 

diet and supplements can improve immunity generally 

[40], while altering the microbiome (with soluble fibre) 

has been shown to reduce the severity of allergic lung 

inflammation [41]. Modulation of the gut microbiome 

(with diet, soluble fibre, probiotics) has been suggested as 

a potential way to assist viral respiratory infections 

generally [42] and SARS-Cov-2 in particular [35]. There 

has been speculation that the gut microbiota can have an 

influence on ACE2 receptors and cardiovascular health 

and are therefore a potential target for cardiopulmonary 

therapy [43]. Additionally, the ACE2 receptors are also 

expressed in the gut enterocytes [35]. The expression of 

ACE2 (in a mouse model) can be regulated by certain 

species of the gut microbiome (Bacteroides species), part 

of the population depleted during COVID-19 

hospitalization [39]. The implications of this has yet to be 

investigated.  

The oral microbiome is also an important component 

of immunity. A healthy microbial population can be 

disturbed by a dysregulated immune system, an 

inflammatory response or poor oral hygiene [44]. A 

disturbed microbiota is implicated in a number of 

diseases, such as periodontitis, CVD and Alzheimer’s 

disease [45] as well as being less able to prevent viral 

infection [46]. Interestingly, periodontal disease has a 

strong association with obesity, CVD, T2D as well as 

aging, the same comorbidities associated with a poor 

prognosis with COVID-19 and the potential of oral 

microbiome dysbiosis and susceptibility to COVID-19 

has been raised [47, 48]. Improvement in oral hygiene is 

suggested as a way to maintain a healthy oral microbiome, 

which may be somewhat protective against viral infection 

[49]. 

 

Photobiomodulation (PBM) therapy in clinical 

medicine 

 

Throughout the ages, light, including sunlight has been 

known for its wide-ranging health effects for myriad 

maladies. In 1903 Dr. Niels Ryberg Finsen, a Danish 

physician was awarded the Nobel Prize in Physiology or 

Medicine for his work in treating tuberculosis with 

ultraviolet or blue light and smallpox with red light [50]. 

The contemporary clinical practice of PBM therapy, often 

also referred to as low-level laser therapy, is the result of 

on-going evolution since its first application over half-a 

century ago, when the work of Dr. Endre Mester and 

colleagues at the Semmelweis Medical University in 

Hungary demonstrated its therapeutic benefits for wound 

healing [51].  

PBM is the use of narrow wavelength bands of light 

(either LED or laser) to modulate cellular responses with 

no thermal effect. Putatively, PBM carries no risk to 

health [52-54], its safety profile equating that of 

ultrasound tests. Unlike much pharmaceutical therapy, 

PBM is free of serious deleterious side-effects and is, by 

its nature, non-invasive. PBM therapy is mostly delivered 
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for no more than 10-20 minutes through portable, 

handheld or wearable devices and is safely repeatable. 

Measurable symptomatic and clinical benefits can result 

from a single treatment but PBM therapy is usually 

provided as a course of several treatment sessions.  

The main target of PBM is considered to be the 

electron transport chain of the mitochondria, in particular 

complex IV, cytochrome-C-oxidase, which acts as a 

chromophore, absorbing red and near infrared light [55]. 

The effect of this absorption is thought to be the release of 

reactive oxygen species (ROS) from the complex, 

allowing increased membrane potential, increased ATP 

production and downstream cellular signalling via ATP, 

cAMP, ROS, Ca2+ and nitric oxide (NO) to influence gene 

transcription [55].  There are also many other 

chromophores capable of absorbing light with resulting 

physiological effects, such as opsins and light-activated 

ion channels. The most effective wavelength for delivery 

of PBM in immune modulation is likely to be in the red 

and near-infrared range, based on the cytochrome-C-

oxidase and porphyrin absorption peaks being centred at 

640 nm and HbO2 at 900nm [55]. The energy required for 

effective PBM is low, in the range of 1 to 16 joules/cm2. 

The PBM dose is biphasic, meaning that above a certain 

threshold (outside of the dose window) increasing the 

energy will not increase the therapeutic effect [56].  

 

 
 

Figure 1. Conditions that have been shown to be successfully treated using photobiomodulation therapy. 

PBM has a multitude of effects on the body, in many 

organ systems and is able to treat various disorders 

(Figure 1), through its action at the cellular and 

mitochondrial level [55]. In experimental models, the 

degree and type of immune responses to PBM are 

influenced by the anatomic surface where treatment is 

applied. For example, immunomodulatory effects 

appeared to be more effective when applied on the thymus 

area compared to limbs, with a favourable rise in 

interleukin (IL)-2, NO and heat shock protein 70 

production. Treatment dose, cumulative dose and duration 

of exposure also appear to pay a role where unduly 

prolonged treatment duration may even cause attenuation 

and reversal of treatment efficacy toward 

immunosuppression [57]. 

The literature is replete with experimental and 

clinical trials demonstrating therapeutic efficacy of PBM 

in a multitude of disease process, including inflammation. 

PBM therapy has recently been recommended as standard 

care for the treatment of oral mucositis following chemo 

or radiation therapy in the MSCC/ISOO guidelines 

www.mascc.org/mucositis-guidelines.  

http://www.mascc.org/mucositis-guidelines
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Photobiomodulation therapy and general health 

 

PBM has been shown to improve the general health and 

resilience of cells and tissues. The effect of PBM to 

improve mitochondrial metabolism and ATP generation 

leads to increased muscle strength and performance in 

sports and athletics [58, 59] and to reduced muscle 

wasting and degeneration in animal and cell culture 

models [60-62]. This makes it a candidate for treatment of 

COVID-19 cases under respiratory distress. PBM has 

been demonstrated to be more effective in damaged or 

diseased cells, tissues and individuals [55]. PBM has also 

been shown to have an effect in chronic obstructive 

airway disease when the muscles of the chest wall are 

treated [63]. Efficient mitochondria are also important in 

overcoming disease and in the recovery process. Often, 

mitochondrial dysfunction increases with age and may not 

be sufficient to enable recovery after infective disease and 

other immune insults [64]. PBM is known to enhance 

mitochondrial function, but the positive effect of PBM on 

the aging process in animal models has yet to be 

demonstrated in humans [65]. The action of PBM on the 

mitochondria also has the effect of activating transcription 

factors, which can lead to increased expression of genes 

involved in inflammatory signalling [66].   

PBM is effective at reducing myocardial infarct size 

and reducing inflammation in animal models [67], has 

been suggested as therapy in human CVD [68] and has 

been shown to modulate the expression of ACE2 [67]. 

PBM has also been shown to improve blood flow and 

oxygenation [69, 70], both peripherally and in the CNS 

most probably due to the release of NO, an important 

vasodilator. PBM therapy has been used to treat post-viral 

and chronic fatigue, as well as fibromyalgia and other 

instances of centrally mediated pain [71]. 

 

Evidence and potential mechanisms of PBM in 

immunomodulation 

 

PBM appears to exert pluripotent effects in the 

modulation of inflammation and immunity [72]. Many 

studies have demonstrated that PBM modulates 

inflammation by reducing the pro-inflammatory 

cytokines (such as IL-1β, IL-6, IL-8, TNF-α) and other 

inflammatory markers released from activated 

inflammatory cells, while increasing the anti-

inflammatory cytokines (IL-10) [72]. The immuno-

modulatory effect of PBM on cytokines regulation and the 

complement cascade occurs via the POMC pathway, 

involving regulation of the hypothalamic pituitary axis 

through the direct modulation of the POMC/melanocortin 

signalling pathway including a-MSH, a potent anti-

inflammatory molecule. The POMC pathway is regulated 

by PBM [73], which in turn modulates both ACTH and β-

opioid, as well as, interestingly, ACE activity [74]. 

One of the central effects of PBM on the immune 

response is via the modulation of neutrophil function [75] 

by balancing neutrophil numbers, improving neutrophil 

efficiency and modulating the neutrophil extracellular 

trap formation [76]. Reducing over-accumulation of 

neutrophils is a major mechanism for the effect of PBM 

in reducing acute lung inflammation [77]. This is crucial 

in preventing the cytokine storm cascade in autoimmune 

diseases. PBM also modulates the ratio of M1 and M2 

macrophage phenotypes, reducing pro-inflammatory 

cytokines and chemokines and increasing anti-

inflammatory cytokines and thus balance the 

inflammatory process [78].  

These inflammatory changes facilitated by PBM 

have profound effects on many body processes. For 

example, PBM therapy has been shown to modulate 

peripheral blood mononuclear cells and CD4+ cells to 

reduce inflammatory effects in multiple sclerosis patients 

and healthy adults by increasing IL-10 and reducing IFN-

γ [79, 80]. PBM reduces the number of inflammatory 

cells, pro-inflammatory cytokines as well as fibrotic tissue 

in a mouse model of lung fibrosis [81]. Acute lung 

inflammation in rats is reduced with PBM to reduce 

oedema, neutrophil influx and TNF-α, while reducing IL-

10 in rats [82].   

In an experimental model of induced acute 

peritonitis in rats, Yu and co-workers [83] showed PBM 

resulted in lymphocyte proliferation and enhanced 

lymphocyte ATP synthesis compared to controls, and the 

60-day survival rate of the PBM group was double that of 

the control group (p<0.001). Assis et al [84] further 

demonstrated the immune modulation capability of PBM, 

with septic rats treated with PBM exhibiting lower IL-6 

activity and decreased atrogin-1 and MuRF-1 immuno-

expression (markers of sepsis related muscle catabolic 

states). 

PBM causes mitogenic stimulation responsive 

lymphocyte proliferation and enhanced lymphocyte ATP 

synthesis [83]. A plausible mechanism for PBM induced 

lymphocytic proliferation is through the reaction of light 

with haemoglobin, resulting in oxygen radical production 

[85]. Indeed, in immunological cells, PBM induces 

production of reactive oxygen species, NO or interleukins 

most often, leading to an anti-inflammatory effect [85]. It 

is well documented that various immune response 

processes are highly dependent on cellular energy, the 

latter being depressed in sepsis and septic shock cases [86, 

87]. The mitochondria probably act as photo-acceptors for 

PBM and robustly reactivate cellular energy synthesis to 

re-establish ATP levels in a variety of cells including 

lymphocytes and macrophages, and through several 
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pathways that trigger activation of nucleic acid synthesis 

and cellular proliferation [88, 89]. 

 

PBM in airway inflammation, gut microbiome and 

dysautonomia 

 

PBM has been shown to be effective in controlling 

neutrophil activation, thus restoring the balance between 

pro and antioxidant mediators by reducing pro-

inflammatory cytokines (IL-6, TNF-α) and increasing 

anti-inflammatory cytokines (IL-10) in a mouse model of 

acute lung injury induced by gut ischemia and reperfusion 

[82, 90]. This has also been shown in mouse models of 

pulmonary fibrosis [91] and chronic obstructive airway 

disease induced by tobacco smoke [92]. The infiltration of 

neutrophils into the lungs, which contributes to 

inflammation, is also reduced by PBM [78]. 

The efficacy of PBM therapy to treat pneumonia has 

been reported in 48 infants treated with conventional 

therapy who also received laser therapy with “Vostok” 

laser therapeutic devices for 2-3 days, compared to 45 

infants receiving conventional therapy alone and another 

18 healthy newborns as controls. In a trial of using red 

light therapy to treat retinopathy of prematurity [93],  one 

notable side-effect was the survival of all 21 premature 

infants in the treatment group, while 4 infants in the non-

treatment group died from lung complications (pers. com. 

Prof Krisztina Valter). It has also been reported that 

ARDS can be successfully treated with PBM therapy [94].   

We have previously shown [95] that PBM can alter 

the gut microbiome in a favourable way in a mouse model. 

We have also demonstrated favourable changes in the gut 

microbiome in a number of human trials (manuscript in 

preparation) and are currently investigating the potential 

of PBM to alter the oral microbiome. One potential 

mechanism for the effect on gut microbiota is the 

reduction of inflammation in the adipose tissue of the 

abdomen afforded by PBM. Improving the gut 

microbiome from a dysbiotic state, whether by diet, 

prebiotics, exercise or PBM, will reduce inflammatory 

processes, improve general health and protect against 

future immunological insults [96], including, perhaps, a 

future cytokine storm.  

Recently there has been much interest in the use of 

transcranial PBM to address many symptoms of 

neurological and neuropsychiatric disorders [97]. 

Transcranial devices have been shown to modulate neural 

oscillations [70, 98], improve cognition in healthy adults, 

improve cognitive performance of people with TBIs [99] 

and improve symptoms of depression [100]. We have 

demonstrated a positive effect of PBM therapy in 

improvement of cognition scores in individuals with 

Parkinson’s disease (manuscript in preparation). 

 

The potential of PBM for COVID-19 

 

A number of recent publications have suggested that PBM 

therapy may be of benefit in the treatment and/or recovery 

of COVID-19 [101, 102] by targeting the blood, either 

directly or trans-dermally [102, 103] and/or targeting the 

lungs [104]. At least one trial of PBM therapy to the 

respiratory muscles is underway https://clinicaltrials. 

gov/ct2/show/NCT04386694 and PBM therapy is being 

trialled as a therapy for COVID-19 in Russia 

www.lazmik.ru/assets/templates/docs/Coronaviridae_ 

SARS_COVID-19_LLLT_protocol_eng1 .pdf. There has 

been one recent case report of the effectiveness of PBM 

therapy to treat a patient with severe COVID-19 

pneumonia [105]. 

There are a number of areas in the COVID-19 crisis 

that may benefit from PBM therapy, especially among the 

elderly and other individuals with comorbidities or 

conditions that make them especially vulnerable to the 

virus: 

1. Individuals infected with the virus and who are 

admitted to intensive care units may benefit from 

PBM therapy to the chest to help improve airways, 

improve blood oxygenation and increase muscle 

performance to assist with breathing. PBM may 

also help to balance the immune system and reduce 

immune hyperactivity to resist progression to a 

cytokine storm. The same mechanisms may help 

vulnerable individuals infected with the virus to 

avoid the worsening of symptoms that would 

otherwise lead to admission to hospital. 

2. The main clinical benefit of PBM therapy in 

COVID-19, however, appears to be for patients 

who continue to be chronically symptomatic in 

convalescence, including the elderly, those with 

multiple comorbidities and the hyper immune-

excitable. These groups are particularly susceptible 

to serious infection with protracted recovery. PBM 

therapy is likely to improve cellular energy and 

general health status, lung immune function, gut 

microbiome/immune status, brain function and 

reduce muscle fatigue. We have also shown that 

PBM readily reverses anosmia in participants with 

Parkinson’s disease (manuscript in preparation). In 

the short term PBM therapy could improve 

recovery from COVID-19 and reduce the risk of 

post-infection sequalae. In the longer term PBM 

therapy could improve the comorbidities that 

increase vulnerability to viral infection in these 

populations. It would also be important to identify 

those younger hyper-excitable individuals who are 

at greater risk of an over-reaction to the viral 

infection. 

 

http://www.lazmik.ru/assets/templates/docs/Coronaviridae_%20SARS_COVID-19_LLLT_protocol_eng1%20.pdf
http://www.lazmik.ru/assets/templates/docs/Coronaviridae_%20SARS_COVID-19_LLLT_protocol_eng1%20.pdf
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3. Individuals who have been adversely affected by 

the lockdown and social isolation strategies in that 

they have been unable to regularly exercise and/or 

attend their normal rehabilitation session are likely 

to also benefit greatly from PBM therapy in the 

same ways as detailed above. 

4. An additional benefit of PBM is as an adjuvant to 

vaccination. The elderly and those with 

comorbidity are most prone to be non- or under-

responders to vaccines [106]. Kashiwagi et al [107] 

demonstrated that near infrared laser acts as an 

adjuvant to vaccination and significantly increases 

immune responses to intradermal influenza 

vaccination without augmenting Immunoglobulin-

E. This conferred increased protection compared to 

an unadjuvanted vaccine control in a mouse 

influenza lethal challenge model. Thus, it is an 

exciting hypothesis for PBM to act as a non-

invasive, risk-free and easily deployed adjuvant 

therapy, especially for at-risk populations. 

 

Conclusions 

 

COVID-19 is not only a major challenge in people with 

comorbidities that affect their immune and inflammatory 

status, but is also particularly aggressive in the elderly, 

who have the compounding problems of an aging immune 

response, increased baseline inflammation, increased 

mitochondrial dysfunction and decreasing microbial 

diversity in their gut microbiome.  PBM therapy is worthy 

of further rapid evaluation and could offer a safe, non-

invasive, side-effect free and easily deployed adjunctive 

treatment and prevention, particularly suited for the most 

at-risk populations.  Studies to evaluate the role of PBM 

in combatting COVID-19 infection and disease 

prevention may ultimately not only benefit the elderly and 

chronically sick but could have larger ramifications as a 

low risk, low-cost intervention in the prevention, 

treatment and healing of a variety of conditions. This may 

have implications for the most vulnerable individuals 

impacted by COVID-19, especially the elderly, infected 

with the virus, those who are slow to recover from the 

effects of the infection and those who have been denied 

their normal exercise/rehabilitation programs due to the 

necessary isolation restrictions.  
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