Isthmin-1 Improves Aging-Related Cardiac Dysfunction in Mice through Enhancing Glycolysis and SIRT1 Deacetylase Activity

Min Hu, Xin Zhang, Yi-Peng Gao, Yu-Xin Hu, Teng Teng, Sha-Sha Wang, Qi-Zhu Tang

REAGENT	SOURCE	IDENTIFIER
Anti-ISM1 antibody	Abcam	ab275610
O-GlcNAc (ctd110.6)	Cell Signaling Technology	#3724
p-P65	Cell Signaling Technology	#3033
t-P65	Cell Signaling Technology	#8242
GAPDH Rabbit mAb	Cell Signaling Technology	#2118
GLUT4	Cell Signaling Technology	#2213
AKT	Cell Signaling Technology	#4691
p-AKT	Cell Signaling Technology	#4060
p16	Santa Cruz Biotechnology	sc-1661
p19	Santa Cruz Biotechnology	sc-32748
p21	Santa Cruz Biotechnology	sc-6246
Lamin B1 Rabbit mAb	Cell Signaling Technology	#17416
NLRP3	Novus Biologicals	IMG-6668A
ASC	Santa Cruz Biotechnology	sc-514414
Caspase1 p20	Proteintech	22915-1-AP
Hexokinase II (C64G5)	Cell Signaling Technology	#2867
CD36	Proteintech	18836-1-AP
SIRT1	Cell Signaling Technology	#8469
Ρ-ΑΜΡΚ α	Cell Signaling Technology	#2537
Τ-ΑΜΡΚ α	Cell Signaling Technology	#2603
P-ACC	Cell Signaling Technology	#3662
T-ACC	Cell Signaling Technology	#11818
GFPT1	Proteintech	14132-1-AP

Supplementary Table 1. The antibody used in the article.

Supplementary Table 2. The primers used in quantitative real-time PCR.

Species	Gene	Forward primer	Reverse primer
Mice	Ism 1	GATGGCCCTGACTCCGAAG	GGTCCCCACTATTTGTCCTGG
Mice	Ann		CCTTGGCTGTTATCTTCGGTACCGG
Mice	Anp		
Mice	α -Mhc	GGAIGCCCIGCIGGIIA	CGCCCAAACICCICCII
Mice	β -Mhc	CCGAGTCCCAGGTCAACAA	CTTCACGGGCACCCTTGGA
Mice	Collal	AGGCTTCAGTGGT T TGGATG	CACCAACAGCACCATCGTTA
Mice	Col3a1	CCCAACCCAGAGATCCCATT	GAAGCACAGGAGCAGGTGTAGA
Mice	Il-6	AGTTGCCTTCTTGGGACTGA	TCCACGATTTCCCAGAGAAC
Mice	Tnf-α	GCAAAGGGAGAGTGGTCA	CTGGCTCTGTGAGGAAGG
Mice	Gapdh	ACTCCACTCACGGCAAATTC	TCTCCATGGTGGTGACGACA
Rat	GAPDH	GACATGCCGCCTGGAGAAAC	AGCCCAGGATGCCCTTTAGT
Rat	ISM1	CGGTGAGGGTGATTGGA	ATTCCTGGGCAGTTTGGA
Rat	Anp	CGGTACCGAAGATAACAGCCA	TCACCACCTCTCAGTGGCAA
Rat	α - $\hat{M}hc$	CAGAAAATGCACCATGAGGA	TCAAGCATTCATATTTATTGTGGC
Rat	β -Mhc	GCTCCTAAGTAATCTGTTTG	AAGTGAGGGTGCGTGGAGCG

Supplementary Figure 1. ISM1 modulates D-gal-induced cellular senescence in H9C2. A Relative *Ism1* mRNA level in cells (n=6). B The ISM1 level was determined by ELISA kits (n=6). C KEGG analysis of RNA-seq. D-E Representative western blot images and statistical results (n=6). F The ISM1 level was determined by ELISA kits (n=6). G Relative *Ism1* mRNA level in cells (n=6). H Representative western blot images and statistical results (n=6). Comparisons between two groups were performed using an unpaired twotailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group, #P < 0.05 si*Ism1* versus si*NC*, \$P < 0.05 si*Ism1*# versus si*NC*.

Supplementary Figure 2. ISM1 attenuates aging-related inflammatory response. A Relative *Ism1* mRNA level in hearts (n=6). B Representative western blot images and statistical results (n=6). C Representative western blot images (n=6). D-E The serum total cholesterol (TC) and triglyceride (TG) levels among groups (n=6). F 6-M-old young and 18-M-old aging mice were injected with AAV9-hISM1 for 8 weeks to overexpress hISM1 or AAV9-CTRL as a control, and then mean arterial pressure (MAP) was determined in mice among groups (n=6). G Fasting blood glucose (FBG) in mice among groups (n=6). H Heart rate among groups (n=6). I-J Representative western blot images and statistical results (n=6). K-L the mRNA levels of myocardial interleukin-6 (IL-6) and tumor necrosis factor- α (TNF- α) (n=6). M Representative western blot images and statistical results (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 3. ISM1 attenuates aging-related cardiac dysfunction and remodeling. A Relative Anp, Bnp, α -Mhc, and β -Mhc mRNA levels in hearts (n=6). B Relative Coll α l and Col3 α l mRNA levels in hearts (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's t-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 4. ISM1 attenuates D-gal-induced cardiac aging. A Quantitative results of SA β -gal-stained cells (n=6). B Relative telomere length in murine hearts (n=6). C Cardiac lipofuscin content in murine hearts (n=6). D Representative western blot images and statistical results (n=6). E The myocardial IL-6, TNF- α and IL-1 β levels were determined by ELISA kits (n=6). F Quantitative results of cardiomyocyte area (n=6). G Quantitative results of average collagen volume in mice (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean ± SEM. *P < 0.05 versus the matched group.

Supplementary Figure 5. ISM1 deficiency deteriorates aging-related cardiac aging. A-B Representative western blot images and statistical results (n=6). C Relative telomere length in murine hearts (n=6). D Cardiac lipofuscin content in murine hearts (n=6). E Representative western blot images and statistical results (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group, #P < 0.05 sh*Ism1* versus sh*NC*, \$P < 0.05 sh*Ism1*# versus sh*NC*.

Supplementary Figure 6. ISM1 deficiency deteriorates aging-related inflammatory response in hearts. A The myocardial IL-6, TNF- α and IL-1 β levels were determined by ELISA kits (n=6). B The myocardial IL-18 and IL-1 β levels were determined by ELISA kits (n=6). C-D Representative western blot images and statistical results (n=6). E Caspase1 activity in hearts (n=6). F Representative western blot images and statistical results (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group, #P < 0.05 sh*Ism1* versus sh*NC*, \$P < 0.05 sh*Ism1*# versus sh*NC*.

Supplementary Figure 7. ISM1 deficiency deteriorates D-gal-induced cardiac dysfunction. A Quantitative results of SA β -galstained cells (n=6). B Relative telomere length in murine hearts (n=6). C Cardiac lipofuscin content in murine hearts (n=6). D Representative western blot images and statistical results (n=6). E-G The myocardial IL-6, TNF- α and IL-1 β levels were determined by ELISA kits (n=6). H Quantitative results of cardiomyocyte area (n=6). I Quantitative results of average collagen volume in mice (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group, # P < 0.05 sh*Ism1* versus sh*NC*, \$ P < 0.05 sh*Ism1* versus sh*NC*.

Supplementary Figure 8. ISM1 overexpression did not affect lipid metabolism. A Relative mRNA levels in hearts (n=6). B Representative western blot images and statistical results (n=6). C Representative western blot images and statistical results (n=6). D CPT1 activity in hearts (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 9. DON treatment blunted the alleviation of ISM1 in aging mice. A Glycogen level in hearts (n=6). B Citrate synthase activity in hearts (n=6). C NADPH level in hearts (n=6). D Representative western blot images and statistical results (n=6). E Representative western blot images and statistical results (n=6). F-G Representative western blot images and statistical results (n=6). H Caspase1 activity in hearts (n=6). I The myocardial IL-6, TNF- α and IL-1 β levels were determined by ELISA kits (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 10. ISM1 overexpression elevates SIRT1 deacetylase activity in aging hearts. A-B Representative western blot images and statistical results (n=6). C-D Representative western blot images and statistical results (n=6). E Relative *Sirt1* mRNA levels in hearts (n=6). F NAD+ level in hearts (n=6). G CAMP level in hearts (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 11. ISM1 lost its protective effects against aging-related cardiac inflammation after SIRT1 deficiency. A SIRT1 deacetylase activity in hearts (n=6). B Representative western blot images (n=6). C-D Quantitative result of SA- β gal-stained heart sections (n=6). E Relative telomere length in murine hearts (n=6). F Representative western blot images and statistical results (n=6). G Representative western blot images and statistical results (n=6). H Representative western blot images and statistical results (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean ± SEM. *P < 0.05 versus the matched group.

Supplementary Figure 12. ISM1 lost its protective effects against aging-related cardiac hypertrophy and fibrosis after SIRT1 deficiency. A +dP/dt and FS of mice were determined by echocardiography (n=6). B The ratio of E/A (n=6). C-D Representative image of WGA staining and quantitative results in heart sections (n=6). E HW/TL in mice (n=6). F-G Representative image of MASSON staining and quantitative results in heart sections (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's t-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 13. SIRT1 is O-GlcNAcylated at Ser 549 in ISM1 overexpressed H9C2 cells. A Representative western blot images (n=6). B SIRT1 deacetylase activity in H9C2 cells (n=6). C Quantitative result of SA- β gal-stained cells (n=6). D-E Representative western blot images and statistical results (n=6). F Caspase1 activity in hearts (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 14. ISM1 promotes glucose uptake in H9C2 via translocating GLUT4 to the cell surface. A Representative western blot images and statistical results (n=6). B-C Representative pictures of SA- β gal-stained heart sections and quantitative results

(n=6). **D** Representative image of GLUT4 staining in H9C2 (n=6). **E-F** Representative western blot images and statistical results (n=6). **G**-H Representative western blot images and statistical results (n=6). I Glucose uptake in H9C2 (n=8). **J** Representative western blot images and statistical results (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 15. ISM1 promotes glucose uptake in hearts via translocating GLUT4 to the cell surface. A Representative western blot images and statistical results (n=6). B Cardiac lipofuscin content in murine hearts (n=6). C Relative telomere length in murine hearts (n=6). D Representative western blot images and statistical results (n=6). E Relative *Il-6*, *Bnp* and *Tnf-a*mRNA levels in hearts (n=6). F Representative western blot images and statistical results (n=6). G +dP/dt of mice was determined by echocardiography (n=6). H The ratio of E/A (n=6). I FS in mice (n=6). J A Relative *Anp*, α -*Mhc*, β -*Mhc*, *Col1a1 and Col3a1*mRNA levels in hearts (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.

Supplementary Figure 16. RISM1 infusion mitigates aging-related cardiac dysfunction in vivo. A Quantitative results of SA β -galstained cells (n=6). B Representative western blot images and statistical results (n=6). C FS in mice (n=6). D +dP/dt of mice was determined by echocardiography (n=6). E The ratio of E/A (n=6). F Quantitative result of cardiomyocyte area in mice (n=6). G HW/TL in mice (n=6). H Quantitative result of average collagen volume (n=6). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean ± SEM. *P < 0.05 versus the matched group.

Supplementary Figure 17. RISM1 infusion mitigates D-gal-induced cellar senescence in vitro. A Representative western blot images and statistical results (n=6). B Quantitative results of SA β -gal-stained cells (n=6). C Serum ISM1 level (n=20). D-E Pearson linear correlation analysis between serum ISM1 and NT-ProBNP and LVEF (n=20). F Serum cTnI levels and LVEF (n=10). Comparisons between two groups were performed using an unpaired two-tailed Student's *t*-test, whereas one-way analysis of variance followed by Tukey post hoc test was conducted for comparisons among three or more groups. Values represent the mean \pm SEM. *P < 0.05 versus the matched group.