Parental Alcohol Exposures Associate with Lasting Mitochondrial Dysfunction and Accelerated Aging in a Mouse Model

Alison Basel, Sanat S. Bhadsavle, Katherine Z. Scaturro, Grace K. Parkey, Matthew N. Gaytan, Jai J. Patel, Kara N. Thomas, Michael C. Golding^{*}

Supplementary Figure 1. Experimental flowchart depicting the timeline of parental alcohol exposures, mouse breeding, gestation, and offspring assessments.

Supplementary Figure 2. Maternal, paternal, and dual parental alcohol consumption exert sex- and treatmentspecific effects on offspring normalized organ weights. We compared bodyweight-normalized (A) adrenal, (B) heart, (C) kidney, (D) pancreas, (E) spleen, (F) thymus, and (G) testis weights between the treatment groups. We analyzed datasets using a two-way ANOVA followed by Tukey's post hoc test. Data represent mean \pm SEM, (n=9-29) * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

Supplementary Figure 3. Maternal, paternal, and dual parental alcohol consumption induce markers of premature cellular senescence in the postnatal day 300 offspring kidney. We used reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) analysis to compare transcripts encoding (A) p16, (B) p21Ink4a, (C) Cyclin D1 (Cend1), and (D) *Lamin-B1* (Lmnb1) between treatments. We used a two-way ANOVA followed by Tukey's post hoc test to compare treatment groups. Data represent mean \pm SEM, (n=8) * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

Supplementary Figure 4. Analysis of clinical markers of liver damage in the female offspring of alcohol-exposed parents. Comparison of (A) alanine transaminase (ALT) and (B) aspartate transaminase (AST) between treatments. (C) Comparison of AST:ALT ratios between treatment groups. We used a two-way ANOVA to compare treatment groups. Data represent mean \pm SEM, (n=8).

Supplementary Figure 5. Maternal, paternal, and dual parental alcohol consumption induce treatment-specific changes in mitochondrial DNA copy number within the postnatal brain and kidney. We used quantitative polymerase chain reaction (qPCR) to measure mitochondrial DNA copy number between the postnatal day 300 (A) brain and (B) kidney between treatment groups and analyzed the data using a two-way ANOVA followed by Tukey's post hoc test to compare treatment groups. Data represent mean \pm SEM, (n=8) * P < 0.05, *** P < 0.001, **** P < 0.0001.

Litter and sex information per treatment group							
Treatment		Number of Litters	Number of Males		Number of Females		
Control		11	28		2.7		
Maternal		10	29		22		
Paternal		12	21		25		
Dual		9	17		10		
	Graph	Statistical Test	Sam	ple Size	Outliers		
Figure phenoty	1: A multiplex mous	se model to study the impacts of par	ental drinking on oj	fspring senescence and	l age-related		
В:	Sire body weight	Two-way ANOVA, multiple comparisons using Sidak.	n =	16 control 15 ethanol	0		
C-D:	Average daily dose of EtOH	One-way ANOVA, multiple comparisons using Tukeys, or Unpaired t test	C: n = D: n =	 19 paternal 17 maternal preconception 22 maternal gestation 11 paternal 8 dual 	0		
E-F:	Maternal daily dose and food intake	Two-way ANOVA, multiple comparisons using Sidak.	n =	13 preconceptioncontrol17 preconceptionethanol20 gestation control20 gestation ethanol	2 preconception control 1 gestation control		
G-H:	Daily calories and weight gain	Unpaired t test.	G: n = H: n =	22 control 20 ethanol 22 control 20 ethanol	0		

Supplementary Table 1. Descriptions of the sample sizes and statistical tests for each figure.

I-J:	Gestation length and litter size	Kruskal-Wallis, multiple comparisons using Dunn's.	I: n =	11 control 12 maternal 11 paternal 8 dual 10 control 12 maternal 11 paternal 8 dual]	I: 1 control
K:	Sex ratio	Chi-Square analysis followed by Fisher's Exact test for individual comparisons.	n =	55 control 51 maternal 46 paternal 27 dual		0
Figure 2	2: Parental alcohol	exposures induce sex- and treatmer	nt-specific effects on	offspring lean weight	and no	ormalized
A-B:	Body weight analysis	Two-way ANOVA, multiple comparisons using Uncorrected Fisher's LSD.	a: n =	28 control 21 maternal 29 paternal 19 dual		0
			b: n =	27 control 25 maternal 23 paternal 9 dual		
C-G:	DEXA scan analysis	Two-way ANOVA, multiple comparisons using Sidak.	Males: n =	10 control 6 maternal 11 paternal 11 dual	D:	1 paternal female
			Females: n =	9 control 8 maternal 8 paternal 9 dual	F:	1 paternal male 1 maternal female 1 dual female
H-I:	Organ to body weight	We inserted organ weights into Excel, then divided by total body weight. Two-way ANOVA, multiple comparisons using Tukey.	Males: n =	28 control 21 maternal 29 paternal 19 dual	I:	1 maternal male 1 control female
			Females: n =	27 control 25 maternal 23 paternal 9 dual		
Figure 3	3: Increased marker	rs of cellular senescence in the brai	ns of offspring deriv	ved from alcohol-expose	ed par	ents
в:	B-gal quantification	comparisons using Tukey.	Males: n =	6 maternal 6 paternal 6 dual		0
			Females: n =	6 control 6 maternal 6 paternal 5 dual		1
C-F:	Senescent genes qPCR	Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	Males: n =	8 control 8 maternal 8 paternal 7 dual	C:	1 maternal male 1 paternal male 1 control female 1 maternal female

			Females: n =	8 control 8 maternal 8 paternal 8 dual	E- F:	1 control female	
Figure 4	Figure 4: parental alcohol exposures program cumulative effects on the male offspring's predisposition to develop						
A-D:	Senescent genes qPCR	Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	Males: n =	8 control 8 maternal 8 paternal 8 dual	B:	1 dual male 1 paternal female	
			Females: n =	8 control 8 maternal 8 paternal 8 dual			
F-H:	Histology quantification	Ordinary One-way ANOVA, multiple comparisons using Tukeys.	n =	8 control 8 maternal 8 paternal 8 dual		0	
I-K:	Liver function tests	I&K: Ordinary One-way ANOVA, multiple comparisons using Tukeys. J: Kruskal-Wallis, multiple comparisons using Dunn's.	n =	8 control 8 maternal 8 paternal 8 dual	I: K:	1 maternal 1 maternal	
Figure : mitocho	5: Stress-induced se ndrial dysfunction	nescence induced by chronic paren	tal alcohol use corr	elates with evidence of	hepati	с	
C-D:	S/OPA1- L/OPA1	Ordinary One-Way ANOVA, multiple comparisons using Fisher's LSD.	Males: n =	9 control 9 maternal 9 paternal 9 dual	C: 1 control 1 dual	1 control 1 dual	
			Females: n =	6 control 6 maternal 6 paternal 6 dual			
Е:	Total OPA1	Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	Males: n =	9 control 9 maternal 9 paternal 9 dual	1 o 1 n	control male naternal male	
			Females: n =	6 control 6 maternal 6 paternal 6 dual			
F:	Total OMA1	Two-way ANOVA, multiple comparisons using Tukey.	Males: n =	6 control 6 maternal 6 paternal 6 dual		0	
			Females: n =	5 control 6 maternal 6 paternal 6 dual			
G:	Mt copy number	Two-way ANOVA, multiple comparisons using Tukey.	Males: n =	8 control 8 maternal 8 paternal 8 dual	1 c	ontrol female	
			Females: n =	8 control 8 maternal 8 paternal			

				8 dual	
H:	ELISA IL-6	Two-way ANOVA, multiple comparisons using Tukey.	Males: n =	5 control 5 maternal 5 paternal 5 dual	0
			Females: n =	5 control 5 maternal 5 paternal 5 dual	
I:	NAD/NADH ratio	Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	Males: n =	4 control 4 maternal 4 paternal 4 dual	0
			Females: n =	4 control 4 maternal 4 paternal 4 dual	
Figure (oxidativ	6: Offspring of alco e damage	hol-exposed parents exhibit decreas	ed Sirtuin protein a	bundance and increase	ed measures of
A:	ELISA Sirt1	Ordinary One-way ANOVA, multiple comparisons were done to the control group using Dunnett.	n =	8 control 8 maternal 8 paternal 8 dual	0
В:	SIRT3 quantification	Ordinary One-Way ANOVA, multiple comparisons using Fisher's LSD.	n =	6 control 6 maternal 6 paternal 6 dual	0
C:	MDA assay	Ordinary One-way ANOVA, multiple comparisons using Tukeys	n =	8 control 8 maternal 8 paternal 8 dual	0
D:	H3K9Ac quantification	Ordinary One-way ANOVA, multiple comparisons using Tukeys	n =	6 control 6 maternal 6 paternal 6 dual	0
M-N:	H3K27me3 and H3K9me3 quantification	Ordinary One-Way ANOVA, multiple comparisons using Fisher's LSD.	n =	6 control 6 maternal 6 paternal 6 dual	1 paternal
Supplen	nental Figure 2: No	rmalized organ weights			
A:	Adrenal gland	Two-way ANOVA, multiple comparisons using Uncorrected Fisher's LSD.	Males: n =	28 control 21 maternal 29 paternal 19 dual	Males: 1 paternal, 2 dual Females: 1 control,
			Females: n =	27 control 25 maternal 23 paternal 9 dual	1 maternal
В:	Heart	Two-way ANOVA, multiple comparisons using Tukeys.	Males: n =	28 control 21 maternal 29 paternal 19 dual	Males: 1 control, 2 maternal Females: 0
			Females: n =	27 control 25 maternal 23 paternal 9 dual	
C:	Kidney	Two-way ANOVA, multiple comparisons using Uncorrected Fisher's LSD.	Males: n =	28 control 21 maternal 29 paternal	Males: 0 Females: 0

				19 dual	
			Females: n =	27 control	
				25 maternal	
				23 paternal	
				9 dual	
D:	Pancreas	Two-way ANOVA, multiple	Males: n =	28 control	Males: 1 control
		comparisons using Tukeys		21 maternal	
				29 paternal	Females: 0
				19 dual	
			Females: n =	27 control	
				25 maternal	
				23 paternal	
				9 dual	
Е:	Spleen	Two-way ANOVA, multiple	Males: n =	28 control	Males: 1 control, 1
		comparisons using Tukeys.		21 maternal	maternal, l
				29 paternal	paternal, 2 dual
				19 dual	F 1 0
			Females: n =	27 control	Females: 0
				25 maternal	
				23 paternal	
F.	Threese	Two way ANOVA multiple	Malaar n –	9 dual	Malage 2 agenteral 2
г:	Thymus	acomparisons using Tukeys	Males: II –	28 control	maternal
		comparisons using Tukeys.		21 maternal	maternar
				10 dual	Females: A control
			Females: n –	27 control	remaies. 4 control
			Tennales. II –	25 maternal	
				23 naternal	
				9 dual	
G:	Testes	Ordinary One-way ANOVA,	n =	28 control	2 paternal
		multiple comparisons using		21 maternal	-
		Tukeys		29 paternal	
		Tukeys		29 paternal 19 dual	
Supplen	nental Figure 3: RT	Tukeys -q PCR to compare senescent trans	ripts in the kidney	29 paternal 19 dual	
Supplen A-D:	nental Figure 3: RT Senescent genes	Tukeys - <i>qPCR to compare senescent transo</i> Two-way ANOVA, multiple	r <i>ipts in the kidney</i> Males: n =	29 paternal 19 dual 8 control	B: 1 maternal
Supplem A-D:	nental Figure 3: RT Senescent genes qPCR	Tukeys - <i>qPCR to compare senescent transo</i> Two-way ANOVA, multiple comparisons were done to the	r <i>ipts in the kidney</i> Males: n =	29 paternal 19 dual 8 control 8 maternal	B: 1 maternal female
Supplen A-D:	n <i>ental Figure 3: RT</i> Senescent genes qPCR	Tukeys - <i>qPCR to compare senescent transo</i> Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	<i>ripts in the kidney</i> Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal	B: 1 maternal female
Supplen A-D:	nental Figure 3: RT Senescent genes qPCR	Tukeys <i>-qPCR to compare senescent transe</i> Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	r <i>ipts in the kidney</i> Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual	B: 1 maternal female C: 1 control male
Supplen A-D:	nental Figure 3: RT Senescent genes qPCR	Tukeys <i>-qPCR to compare senescent transo</i> Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	r <i>ipts in the kidney</i> Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control	B: 1 maternal female C: 1 control male
Supplen A-D:	nental Figure 3: RT Senescent genes qPCR	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	ripts in the kidney Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 7 dual 8 control 8 maternal 9 maternal	B: 1 maternal female C: 1 control male D: 2 maternal
Supplen A-D:	<i>nental Figure 3: RT</i> Senescent genes qPCR	Tukeys -qPCR to compare senescent transa Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	ripts in the kidney Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 9 paternal	B: 1 maternal female C: 1 control male D: 2 maternal males
Supplem A-D:	anental Figure 3: RT Senescent genes qPCR	Tukeys -gPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett.	ripts in the kidney Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 7 dual 8 control 8 maternal 8 paternal 8 paternal 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males
Supplem A-D: Supplem	nental Figure 3: RT Senescent genes qPCR	Tukeys -qPCR to compare senescent transa Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One Were ANOV4	Fripts in the kidney Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 7 dual 8 control 8 maternal 8 paternal 8 dual 8 control	B: 1 maternal female C: 1 control male D: 2 maternal males
Supplem A-D: Supplem A-D:	nental Figure 3: RT Senescent genes qPCR nental Figure 4: Fer ALT and AST analysis	Tukeys -qPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukaya	ripts in the kidney Males: n = Females: n = n =	29 paternal 19 dual 8 control 8 maternal 7 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 control 8 maternal 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0
Supplem A-D: Supplem A-D:	nental Figure 3: RT Senescent genes qPCR nental Figure 4: Fer ALT and AST analysis	Tukeys -qPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys	ripts in the kidney Males: n = Females: n = n =	29 paternal 19 dual 8 control 8 maternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 control 8 maternal 8 control 8 maternal	B: 1 maternal female C: 1 control male D: 2 maternal males 0
Supplem A-D: Supplem A-D:	nental Figure 3: RT Senescent genes qPCR nental Figure 4: Fer ALT and AST analysis	Tukeys -qPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys	ripts in the kidney Males: n = Females: n = n =	29 paternal 19 dual 8 control 8 maternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0
Supplem A-D: Supplem A-D:	nental Figure 3: RT Senescent genes qPCR nental Figure 4: Fen ALT and AST analysis	Tukeys -qPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial conv number in the bra	ripts in the kidney Males: n = Females: n = n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR nental Figure 4: Fen ALT and AST analysis nental Figure 5: Mitt mtDNA/	Tukeys -qPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the bran Two-way ANOVA, multiple	ripts in the kidney Males: n = Females: n = n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR mental Figure 4: Fer ALT and AST analysis mental Figure 5: Mitt mtDNA/ ncDNA analysis	Tukeys -qPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the bran Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 gaternal 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR mental Figure 4: Fea ALT and AST analysis mental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transo Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the bra. Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 paternal	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR Mental Figure 4: Fei ALT and AST analysis Mental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = <u>n and kidney</u> Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 dual 7 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 7 dual 8 control 8 maternal 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR Mental Figure 4: Fei ALT and AST analysis Mental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = <i>n and kidney</i> Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 paternal 7 dual 8 control	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR ALT and AST analysis mental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 paternal 8 paternal 8 paternal 8 paternal 8 paternal 8 paternal 8 paternal 8 paternal 8 control 8 maternal 8 control 8 maternal 8 control 8 maternal 8 control 8 maternal	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR ALT and AST analysis mental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 paternal	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control
Supplem A-D: Supplem A-D: Supplem A:	nental Figure 3: RT Senescent genes qPCR ALT and AST analysis mental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n = Females: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control
Supplem A-D: Supplem A-D: Supplem A: B:	nental Figure 3: RT Senescent genes qPCR ALT and AST analysis nental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys. Two-way ANOVA, multiple	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n = Females: n = Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 control 8 control 8 maternal 8 control 8 control	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control
Supplem A-D: Supplem A-D: Supplem A: B:	nental Figure 3: RT Senescent genes qPCR ALT and AST analysis nental Figure 5: Mit mtDNA/ ncDNA analysis in brain	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys. Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n = Females: n = Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 8 control 8 maternal 8 paternal 8 control 8 maternal 8 paternal 8 control 8 maternal 8 paternal 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control Males: 1 paternal
Supplem A-D: Supplem A-D: Supplem A: B:	mental Figure 3: RT Senescent genes qPCR ALT and AST analysis mental Figure 5: Mit mtDNA/ ncDNA analysis in brain mtDNA/ ncDNA analysis in kidney	Tukeys -qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n = Females: n = Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 paternal 8 paternal 8 paternal 8 paternal 8 control 8 maternal 8 paternal 8	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control Males: 1 paternal Females: 1 dual
Supplem A-D: Supplem A-D: Supplem A: B:	mental Figure 3: RT Senescent genes qPCR ALT and AST analysis mental Figure 5: Mit mtDNA/ ncDNA analysis in brain mtDNA/ ncDNA analysis in kidney	-qPCR to compare senescent transe Two-way ANOVA, multiple comparisons were done to the control group using Dunnett. male ALT and AST liver analysis Ordinary One-Way ANOVA, multiple comparisons Tukeys ochondrial copy number in the brain Two-way ANOVA, multiple comparisons using Tukeys.	ripts in the kidney Males: n = Females: n = n = in and kidney Males: n = Females: n = Males: n =	29 paternal 19 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 dual 8 dual 8 control 8 maternal 8 dual 8 dual 8 control 8 maternal 8 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 8 paternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 8 dual 8 control 8 maternal 8 paternal 7 dual 8 control 8 maternal 7 dual	B: 1 maternal female C: 1 control male D: 2 maternal males 0 Males: 1 maternal Females: 1 control Males: 1 paternal Females: 1 dual

	8 maternal	
	8 paternal	
	8 dual	

Supplementary Table 2: Sequence information for the PCR primers.

Gene	Forward	Reverse
β-actin	CCACCATGTACCCAGGCATT	CGGACTCATCGTACTCCTGC
α-tubulin	CTGATGTATGCCAAGCGTGC	TCGCCTTCCACAGAATCCAC
P21(WAF/Cip1)	GTTCCTTGCCACTTCTTACCT	GGTGAGTCCTAACTGCCATCC
P16Ink4a	CGCTGGGTGGTCTTTGTGTA	GCTCTGCTCTTGGGATTGGC
CCND1	TGCGTGCAGAAGGAGATTGT	CTTCTTCAAGGGCTCCAGGG
LMNB1	ATCAACCAATGGTGGTCTT	TCCTCGGGTATGGTGGTCTT
D-Loop3	TCCTCCGTGAAACCAACAA	AGCGAGAAGAGGGGGCATT
Tert	CTAGCTCATGTGTCAAGACCCTCTT	GCCAGCACGTTTCTCTCGTT