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Methods 

 
A comprehensive literature review was conducted by searching the Web of Science, PubMed, and Scopus 

databases for peer-reviewed English-language articles. The search terms included “hydrocephalus,” “cellular 

mechanism,” “treatment,” “animal models,” and “experimental hydrocephalus.” The review primarily 

focused on articles published within the past decades, that is, from 2014 to 2024, to ensure a thorough 

understanding of recent advancements. However, earlier seminal studies were also included to provide historical 

context and highlight the development of foundational concepts. The inclusion criteria encompassed experimental 

studies, clinical trials, and review articles directly relevant to the pathogenesis, treatment, and modeling of 

hydrocephalus. Particular attention was given to high-quality studies that provided significant contributions to 

understanding the disease mechanisms and therapeutic strategies. Early foundational studies were incorporated to 

highlight the development of key concepts, while recent publications were prioritized to present the latest 

advancements.   

 

 

Supplementary Table 1. Animal models of Post - hemorrhagic Hydrocephalus 

 

Type Age 
Species/Gen

der (F/M) 

Injection of 

agent 
Methods 

Type of 

hydrocephal

us 

Features Conclusion 
Ref

. 

PIVH 

Neonatal/P4 SD rat 

200 μL of 

fresh 

maternal 

whole blood 

Intraventricu

lar injection 
C 4w 

Human umbilical 

cord blood-

derived MSCs 

intervention 

Intravenous 

administration 

of MSCs might 

be a promising 

treatment 

[1] 

Neonatal/P8 

C57BL/6J 

and Balb/c 

background 

mouse/- 

LPA 
Intraventricu

lar injection 
SA 1w 

LPA1 and LPA3 

were key 

mediators of 

PHH  

The mechanism 

might be 

ventricular 

surface 

denudation and 

ciliary 

dysfunction, not 

physical 

obstruction 

[2] 

Adult 

SD rat/M 

200 μL non-

heparinized 

autologous 

blood 

Intraventricu

lar injection 
A 1d-3d 

The elevation of 

AQP4 level 

expression in the 

rat 

hydrocephalus 

model was 

verified 

Downregulation 

of AQP4 

expression could 

worsen 

hydrocephalus 

[3] 

SD rat/M 

130 μL of 

autologous 

vena 

caudalis 

blood/50 μL 

FeCl3 (2 

mmol/L) 

Intraventricu

lar injection 
A-C 2d-4w 

Iron activated the 

Wnt signaling 

pathway after 

IVH and 

regulated 

subarachnoid 

fibrosis 

Edaravone 

alleviated 

hydrocephalus 

and neurological 

disorders by 

activating the 

Nrf2/HO-1 

pathway 

[4] 

[5] 

Wistar rat/M 

200 µL 

homologous 

blood 

Intraventricu

lar injection 
A 2d The regulatory 

mechanism of 

CSF 

hypersecretion 

was mediated by 

[6] 
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CSF secretion 

was revealed 

activation of the 

TLR4-

dependent 

STE20-type 

stress kinase 

SPAK 

SD rat/M 

200 µL 

homologous 

blood 

Intraventricu

lar injection 
SA 1w 

Metformin 

intervention 

The occurrence 

of 

hydrocephalus 

was related to 

the activation of 

the 

VEGF/VEGFR2

/p-Src pathway 

[7] 

SD rat/M 

50 μL FeCl3 

(2 

mmol/L)/30

μL lysed 

RBCs 

Intraventricu

lar injection 
A 1d 

Injections of 

packed RBCs 

could not cause 

hydrocephalus 

Injection of iron 

resulted in VD 

and ependymal 

cell injury 

[8] 

SD rat/M 

200 μL of 

autologous 

blood/3 U 

thrombin 

Intraventricu

lar injection 
A 1d 

PAR-1 antagonist 

SCH79797 

intervention 

Thrombin-

induced 

hydrocephalus 

was associated 

with ependymal 

damage and 

BBB disruption, 

which is 

mediated by 

PAR-1 

[9] 

SD rat/M 
3 U of rat 

thrombin 

Intraventricu

lar injection 
A 1d 

Carbonic 

anhydrase 

inhibitor 

acetazolamide or 

PAR1/p-Src/p-

PAK1 inhibitors 

intervention 

Thrombin 

down-regulated 

the expression 

of VE-cadherin 

in the CP 

[10

] 

[11

] 

SD rat 

/F, M 

5U/ 3U rat 

thrombin  

Intraventricu

lar injection 
A 1d 

Focusing on 

estrogen 

Thrombin 

caused more 

severe VD and 

white matter 

damage in 

female rats 

[12

] 

 
SD rat 

/F, M 

Recombinan

t rat Prx2 

protein 

solution  

Intraventricu

lar injection 
A 1d MC intervention 

Prx2 might 

cause 

hydrocephalus 

by inducing 

inflammation 

and damage to 

the ventricular 

wall 

[13

, 

14] 

 SD rat/M LPA 
Intraventricu

lar injection 
A 1d 

TRPV4 was an 

ICP regulator 

that regulated the 

rate of CSF 

secretion  

LPA directly 

acted on TRPV4 

in adult rats to 

regulate NKCC1 

and promote 

[15

] 
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CSF 

hypersecretion 

Elderly 
Fischer 

rat/M 

50 μL FeCl3 

(2 mmol/L) 

Intraventricu

lar injection 
A 1d 

Minocycline or 

clodronate 

liposomes 

intervention 

The stromal 

macrophages of 

elderly rats 

account for 

more than 10% 

of CP cells 

[16

] 

GMH 

Neonatal/E2

9 

New 

Zealand 

white rabbit 

50% 

glycerol:  

water (6.5 

g/kg) 

Intraperitone

al injection 
A 1d 

Unrestricted 

somatic stem 

cells intervention 

Unrestricted 

somatic stem 

cells could exert 

anti-

inflammatory 

effects to reduce 

pathological 

damage 

[17

] 

Neonatal/2 

h postnatal 

age 

Rabbit pup/- Glycerol  
Intraperitone

al injection 
SA 2w 

It was difficult to 

replicate 

Human 

pathological 

phenomena such 

as VD, glial cell 

hyperplasia, 

decreased 

myelination had 

been reproduced 

[18

] 

Neonatal/P7 

SD rat/- 

0.3 U of 

clostridial 

collagenase 

VII-S 

Ganglionic 

eminence 

injection 

C 4w 

PPARγ 

stimulation and 

PPARγ 

antagonist 

intervention 

PPARγ-induced 

upregulation of 

CD36 to 

promote 

hematoma lysis 

might be a key 

therapeutic 

target 

[19

] 

Rat/- 
Bacterial 

collagenase 

Ganglionic 

eminence 

injection 

C 4w 

COX-2 or mTOR 

inhibitors 

improved the 

hydrocephalus 

after GMH 

Inflammatory 

and proliferative 

responses that 

might be 

upstream of 

dysregulation of 

extracellular 

matrix proteins 

[20

] 

SD rat/- 

0.3 U of 

clostridial 

collagenase 

VII-S 

Striatum 

injection 

SA-C 1w-

4w 

Microglia and 

astrocyte 

activation 

inhibitor MC 

intervention 

Treatment with 

MC reduced 

GMH-induced 

hydrocephalus 

and brain injury 

[21

] 

SD rat/- 

0.3 U of 

clostridial 

collagenase 

VII-S 

Ganglionic 

eminence 

injection 

C 1m 

Neurological 

consequences 

after GMH were 

described 

This model 

corresponded to 

grades III-IV 

GMH in human 

preterm infants 

[22

] 

ICH Adult Wistar rat/M 

0.5 μL of 

collagenase 

(Type VII, 

1μ/μL) 

Caudate 

putamen 

injection 

SA 7d 
Atorvastatin 

intervention 

Atorvastatin 

relieved 

hydrocephalus 

and inhibited 

[23

] 
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neuronal 

apoptosis 

SD rat/M 

200 μL 

autologous 

blood 

Caudate 

nucleus 

injection/ 

Intraventricu

lar injection 

A-C 1d-4w 

The ICH/IVH rat 

model resulted in 

the same bilateral 

VD, perhaps 

excluding 

interference with 

brain atrophy and 

tissue loss in 

assessing 

ventricular size 

The ICH/IVH 

rat model 

induced more 

severe chronic 

hydrocephalus 

and cerebral iron 

deposition than 

the PIVH model 

[24

] 

SD rat/M  

200 μL 

autologous 

blood 

Caudate 

nucleus 

injection 

A-C 1d-4w 

Chronic 

hydrocephalus 

model 

It was 

inconsistent 

with the high 

mortality rate in 

patients with 

ICH in clinical 

practice 

[25

] 

SAH-

Injection 

Neonatal/on

e-year-old 

Cynomolgus 

monkey/F 

2-3 mL of 

autologous 

blood 

Cisterna 

magna 

injection 

C 17d 
Primate model 

animals 

Extensive 

arachnoid 

granule fibrosis 

was present 

[26

] 

Neonatal/P1

0- P11 

C57BL/6 

mouse/- 

300 ng of 

human 

recombinant 

TGF-β1 

Parietal lobe 

injection 
C 3w-6w 

Slowly 

progressive 

communicating 

hydrocephalus 

model 

Human 

recombinant 

TGF-β1 

injection 

resulted in a 

reduction in cilia 

on the 

ependyma and 

deposition of 

collagen fibers 

in the 

leptomeninx 

intercellular 

space 

[27

, 

28] 

CD-1 nude 

mouse/- 

300 ng of 

human 

recombinant 

TGF-β1 

Intraperitone

al injection 
C 6w 

Near-infrared 

fluorescence 

imaging methods 

Near-infrared 

optical imaging 

could be used to 

monitor CSF 

movement 

[29

] 

Adult 

SD rat/F 

0.4 mL of 

non-

heparinized 

autologous 

blood 

Cisterna 

magna 

injection 

C 2w 

The expression 

of HGF and 

VEGF in 

hydrocephalus 

was analyzed for 

the first time 

The pathological 

damage of 

chronic 

hydrocephalus 

after SAH was 

related to the 

high expression 

of HGF and 

VEGF 

[30

] 

SD rat/M 

0.5 mL 

autologous 

un-

heparinized 

blood  

Cisterna 

magna 

injection 

C 3w 

Decreased 

expression of 

TGF-

β1/Smad/CTGF 

signaling 

pathway was 

ICA II inhibited 

chronic 

hydrocephalus 

and 

[31

] 
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associated with 

chronic 

hydrocephalus 

and fibrosis 

subarachnoid 

fibrosis 

SAH-

Endovascul

ar 

perforation 

Adult 

SD rat/M - 

Endovascula

r perforation 

technique 

A-C 1d-

23d 

Elevated ICP was 

associated with 

VD and 

behavioral 

alterations 

Rats with 

hydrocephalus 

suffered more 

severe 

hemorrhage and 

ventricular wall 

damage than  

rats without 

hydrocephalus 

[32

]  

SD rat/M - 

Endovascula

r perforation 

technique 

A 1d 

This model 

focused on 

changes in the 

cells of the 

plexus epiplexus 

cell 

There was an 

increase in the 

number and size 

of epiplexus 

cells in rats with 

hydrocephalus, 

which may be 

related to 

thrombin 

[33

] 

SD rat 

/F, M 
- 

Endovascula

r perforation 

technique 

A 1d 

Gender 

influenced the 

development of 

acute 

hydrocephalus 

after SAH 

The incidence 

and severity of 

acute 

hydrocephalus 

in female rats 

were 

significantly 

higher than 

males 

[34

] 

TBI-

Modified 

weight 

drop 

Neonatal 

/P20  
SD rat/M - 

The impact 

weight was 

allowed to 

fall freely 

SA 2w 

It was the first 

detailed study of 

intracellular 

electrophysiologi

cal changes after 

rmTBI 

Compared to a 

single mTBI 

event, rmTBI 

could induce 

significant long-

term VD 

[35

] 

TBI-LFPI Adult SD rat/M 

Lateral fluid 

percussion 

brain injury 

(2.5–3.5 

atm)  

- A 1d 

This study 

reported the 

acute 

hydrocephalus 

induced by the 

LFPI model 

DFX treatment 

could reduce 

TBI-induced 

ipsilateral and 

contralateral VD 

[36

] 

TBI-CCI Adult 
C57BL/6 

mouse/M 

CCI device 

with 

velocity of 

2.5 m/s  

- SA 1w-2w 

New therapeutic 

strategies for 

monocytes were 

presented 

Depletion of 

monocytes 

attenuated 

hydrocephalus 

and preserved 

functional white 

matter  

[37

] 

 

Abbreviations: F, Female; M, Male; P, Postnatal day; PIVH, Primary intraventricular hemorrhage; IVH, Intraventricular hemorrhage; GMH, Germinal 

matrix hemorrhage; ICH, Intracerebral hemorrhage; SAH, Subarachnoid hemorrhage; TBI, Traumatic brain injury; mTBI, Mild traumatic brain injury; 

rmTBI, Repetitive mTBI; LFPI, Lateral (parasagittal) fluid-percussion injury; CCI, Controlled cortical impact; A, Acute hydrocephalus; SA, Subacute 

hydrocephalus; C, Chronic hydrocephalus; h, Hour; d, Day; w, Week; m, Month; y, Year; VD, Ventricular dilatation; CSF, Cerebrospinal fluid; MSCs, 

Mesenchymal stem cells; AQP, Aquaporin; NF-κB, Nuclear factor-κB; TLR4, Toll-like receptor 4; SPAK, STE20/SPS1-related proline/alanine-rich 

kinase; VEGF, Vascular endothelial growth factor; PAR-1, Protease-activated receptor-1; p-Src, Phospho-Src; p-PAK1, Phospho-PAK1; BBB, Blood-

brain barrier; VE-cadherin, Vascular endothelial‐cadherin; CP, Choroidal plexus; Prx2, Peroxiredoxin 2; LPA, Lysophosphatidic acid; TRPV4, Transient 

receptor potential vanilloid 4; PPARγ, Peroxisome proliferator-activated receptor gamma; TGF-β1, Transforming growth factor-β1; ICA II, Icariside II; 
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DFX, Deferoxamine; SCH79797, 3-N-cyclopropyl-7-[(4-propan-2-ylphenyl)methyl]pyrrolo[3,2-f ]quinazoline-1,3-diamine;dihydrochloride; CTGF, 

Connective tissue growth factor; ICP, Intracranial pressure 
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